Ali J. Mohammed, Hussein Hayder Mohammed Ali, Anwar S. Barrak, A. M. Hussein, Murad Ramadan Mohammed
{"title":"使用氧化铜纳米粒子和扭曲带增强湍流传热","authors":"Ali J. Mohammed, Hussein Hayder Mohammed Ali, Anwar S. Barrak, A. M. Hussein, Murad Ramadan Mohammed","doi":"10.1556/606.2024.00985","DOIUrl":null,"url":null,"abstract":"A computational model is developed to investigate the convective heat transfer properties and the fluid flow characteristics of cupric oxide - water nano-fluid in a horizontal circular pipe aiming to provide insights into optimizing heat transfer in such systems. A twisted tape with varied twist ratios is inserted. This quantitative investigation used five Reynolds number from 4,000 to 12,000 under a uniform heat flux scenario of 25,000 W m−2. All experiments were performed as a single-phase fluid with cupric oxide values of 0, 0.4, 1, and 2% by volume. By reducing the twist ratio and increasing volume concentration, the average heat transfer coefficient of cupric oxide-water nano-fluid was improved. For a twist ratio of 4D, the maximum heat transfer improvement was 228% greater than the plain pipe. The presence of twisted tape with modest step ratios causes the friction factor to grow.","PeriodicalId":35003,"journal":{"name":"Pollack Periodica","volume":"52 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of turbulent heat transfer by using CuO nano-particle and twisted tape\",\"authors\":\"Ali J. Mohammed, Hussein Hayder Mohammed Ali, Anwar S. Barrak, A. M. Hussein, Murad Ramadan Mohammed\",\"doi\":\"10.1556/606.2024.00985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A computational model is developed to investigate the convective heat transfer properties and the fluid flow characteristics of cupric oxide - water nano-fluid in a horizontal circular pipe aiming to provide insights into optimizing heat transfer in such systems. A twisted tape with varied twist ratios is inserted. This quantitative investigation used five Reynolds number from 4,000 to 12,000 under a uniform heat flux scenario of 25,000 W m−2. All experiments were performed as a single-phase fluid with cupric oxide values of 0, 0.4, 1, and 2% by volume. By reducing the twist ratio and increasing volume concentration, the average heat transfer coefficient of cupric oxide-water nano-fluid was improved. For a twist ratio of 4D, the maximum heat transfer improvement was 228% greater than the plain pipe. The presence of twisted tape with modest step ratios causes the friction factor to grow.\",\"PeriodicalId\":35003,\"journal\":{\"name\":\"Pollack Periodica\",\"volume\":\"52 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pollack Periodica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/606.2024.00985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pollack Periodica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/606.2024.00985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Enhancement of turbulent heat transfer by using CuO nano-particle and twisted tape
A computational model is developed to investigate the convective heat transfer properties and the fluid flow characteristics of cupric oxide - water nano-fluid in a horizontal circular pipe aiming to provide insights into optimizing heat transfer in such systems. A twisted tape with varied twist ratios is inserted. This quantitative investigation used five Reynolds number from 4,000 to 12,000 under a uniform heat flux scenario of 25,000 W m−2. All experiments were performed as a single-phase fluid with cupric oxide values of 0, 0.4, 1, and 2% by volume. By reducing the twist ratio and increasing volume concentration, the average heat transfer coefficient of cupric oxide-water nano-fluid was improved. For a twist ratio of 4D, the maximum heat transfer improvement was 228% greater than the plain pipe. The presence of twisted tape with modest step ratios causes the friction factor to grow.
期刊介绍:
Pollack Periodica is an interdisciplinary, peer-reviewed journal that provides an international forum for the presentation, discussion and dissemination of the latest advances and developments in engineering and informatics. Pollack Periodica invites papers reporting new research and applications from a wide range of discipline, including civil, mechanical, electrical, environmental, earthquake, material and information engineering. The journal aims at reaching a wider audience, not only researchers, but also those likely to be most affected by research results, for example designers, fabricators, specialists, developers, computer scientists managers in academic, governmental and industrial communities.