{"title":"洛伦兹-肯莫津空间形式中半斜子曲率的优化陈氏第一不等式","authors":"Mehraj Ahmad, Prince Majeed","doi":"10.31926/but.mif.2024.4.66.1.9","DOIUrl":null,"url":null,"abstract":"In this paper, we present necessary and sufficient conditions for a Lorentz contact manifold to be a Lorentz Kenmotsu manifold. Moreover, we obtain the optimal Chen first inequality for semi-slant submanifolds in Lorentz Kenmotsu space forms. Furthermore, the equality case of Chen inequality has been discussed.","PeriodicalId":505295,"journal":{"name":"Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An optimized Chen first inequality for semi-slant submanifolds in Lorentz Kenmotsu space forms\",\"authors\":\"Mehraj Ahmad, Prince Majeed\",\"doi\":\"10.31926/but.mif.2024.4.66.1.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present necessary and sufficient conditions for a Lorentz contact manifold to be a Lorentz Kenmotsu manifold. Moreover, we obtain the optimal Chen first inequality for semi-slant submanifolds in Lorentz Kenmotsu space forms. Furthermore, the equality case of Chen inequality has been discussed.\",\"PeriodicalId\":505295,\"journal\":{\"name\":\"Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31926/but.mif.2024.4.66.1.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2024.4.66.1.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An optimized Chen first inequality for semi-slant submanifolds in Lorentz Kenmotsu space forms
In this paper, we present necessary and sufficient conditions for a Lorentz contact manifold to be a Lorentz Kenmotsu manifold. Moreover, we obtain the optimal Chen first inequality for semi-slant submanifolds in Lorentz Kenmotsu space forms. Furthermore, the equality case of Chen inequality has been discussed.