{"title":"球壳上的最新奥斯特洛夫斯基不等式","authors":"George A. Anastassiou","doi":"10.31926/but.mif.2024.4.66.1.1","DOIUrl":null,"url":null,"abstract":"Here we present general multivariate mixed Ostrowski type inequalities over spherical shells and balls. We cover the radial and not necessarily radial cases. The proofs derive by the use of some estimates coming out of some new trigonometric and hyperbolic Taylor’s formulae ([2]) and reducing the multivariate problem to a univariate one via general polar coordinates.","PeriodicalId":505295,"journal":{"name":"Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science","volume":"19 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Updated Ostrowski inequalities over a spherical shell\",\"authors\":\"George A. Anastassiou\",\"doi\":\"10.31926/but.mif.2024.4.66.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here we present general multivariate mixed Ostrowski type inequalities over spherical shells and balls. We cover the radial and not necessarily radial cases. The proofs derive by the use of some estimates coming out of some new trigonometric and hyperbolic Taylor’s formulae ([2]) and reducing the multivariate problem to a univariate one via general polar coordinates.\",\"PeriodicalId\":505295,\"journal\":{\"name\":\"Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science\",\"volume\":\"19 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31926/but.mif.2024.4.66.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2024.4.66.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Updated Ostrowski inequalities over a spherical shell
Here we present general multivariate mixed Ostrowski type inequalities over spherical shells and balls. We cover the radial and not necessarily radial cases. The proofs derive by the use of some estimates coming out of some new trigonometric and hyperbolic Taylor’s formulae ([2]) and reducing the multivariate problem to a univariate one via general polar coordinates.