球壳上的最新奥斯特洛夫斯基不等式

George A. Anastassiou
{"title":"球壳上的最新奥斯特洛夫斯基不等式","authors":"George A. Anastassiou","doi":"10.31926/but.mif.2024.4.66.1.1","DOIUrl":null,"url":null,"abstract":"Here we present general multivariate mixed Ostrowski type inequalities over spherical shells and balls. We cover the radial and not necessarily radial cases. The proofs derive by the use of some estimates coming out of some new trigonometric and hyperbolic Taylor’s formulae ([2]) and reducing the multivariate problem to a univariate one via general polar coordinates.","PeriodicalId":505295,"journal":{"name":"Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science","volume":"19 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Updated Ostrowski inequalities over a spherical shell\",\"authors\":\"George A. Anastassiou\",\"doi\":\"10.31926/but.mif.2024.4.66.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here we present general multivariate mixed Ostrowski type inequalities over spherical shells and balls. We cover the radial and not necessarily radial cases. The proofs derive by the use of some estimates coming out of some new trigonometric and hyperbolic Taylor’s formulae ([2]) and reducing the multivariate problem to a univariate one via general polar coordinates.\",\"PeriodicalId\":505295,\"journal\":{\"name\":\"Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science\",\"volume\":\"19 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31926/but.mif.2024.4.66.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2024.4.66.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这里,我们提出了球壳和球上的一般多元混合奥斯特洛夫斯基式不等式。我们涵盖了径向和非径向情况。通过使用一些新的三角和双曲泰勒公式([2])得出的一些估计值,并通过一般极坐标将多变量问题简化为单变量问题,从而得出证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Updated Ostrowski inequalities over a spherical shell
Here we present general multivariate mixed Ostrowski type inequalities over spherical shells and balls. We cover the radial and not necessarily radial cases. The proofs derive by the use of some estimates coming out of some new trigonometric and hyperbolic Taylor’s formulae ([2]) and reducing the multivariate problem to a univariate one via general polar coordinates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信