{"title":"伊万飓风(2004 年)眼壁更换周期中的不对称现象","authors":"Bruno S. Rojas, A. Didlake, Jun A. Zhang","doi":"10.1175/mwr-d-23-0129.1","DOIUrl":null,"url":null,"abstract":"\nThe physical processes that govern eyewall replacement cycles (ERCs) in tropical cyclones (TCs) are not yet fully understood. In particular, asymmetric structures within the TC inner core have an uncertain role in ERC dynamics. This study analyzes the kinematic and precipitation asymmetric structures during successive ERCs in Hurricane Ivan (2004) using airborne Doppler radar observations. The azimuthal locations of these asymmetries are analyzed relative to the deep-layer (850-200 hPa) environmental wind shear vector. Two ERCs were analyzed at different stages of their evolution. During the concentric eyewall stage of the first ERC, the outer eyewall updrafts were strongest in the left-of-shear half, which also coincided with mesoscale descending inflow (MDI) just radially outward. Enhanced low-level convergence, updrafts, and MDI were collocated in an zone spiraling inward towards the strongest outer eyewall updrafts, suggesting that the vertical velocity asymmetry in the outer eyewall was possibly forced by a stratiform-induced cold pool similar to MDI impacts seen in past TC studies. During the final stage of the second ERC, the outer eyewall (now the singular primary eyewall) experienced an upwind shift in the precipitation and vertical velocity asymmetries. The updraft maximum shifted from the downshear-left quadrant to the downshear-right quadrant, and the precipitation maximum (downwind of the updraft maximum) shifted from left-of-shear to the downshear direction. This shift corroborates previous studies, which hypothesize that at the end of an ERC, the forcing mechanism that drives the eyewall vertical velocity asymmetry transitions from MDI/cold-pool processes to direct interaction with the environmental wind shear.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetries During Eyewall Replacement Cycles of Hurricane Ivan (2004)\",\"authors\":\"Bruno S. Rojas, A. Didlake, Jun A. Zhang\",\"doi\":\"10.1175/mwr-d-23-0129.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThe physical processes that govern eyewall replacement cycles (ERCs) in tropical cyclones (TCs) are not yet fully understood. In particular, asymmetric structures within the TC inner core have an uncertain role in ERC dynamics. This study analyzes the kinematic and precipitation asymmetric structures during successive ERCs in Hurricane Ivan (2004) using airborne Doppler radar observations. The azimuthal locations of these asymmetries are analyzed relative to the deep-layer (850-200 hPa) environmental wind shear vector. Two ERCs were analyzed at different stages of their evolution. During the concentric eyewall stage of the first ERC, the outer eyewall updrafts were strongest in the left-of-shear half, which also coincided with mesoscale descending inflow (MDI) just radially outward. Enhanced low-level convergence, updrafts, and MDI were collocated in an zone spiraling inward towards the strongest outer eyewall updrafts, suggesting that the vertical velocity asymmetry in the outer eyewall was possibly forced by a stratiform-induced cold pool similar to MDI impacts seen in past TC studies. During the final stage of the second ERC, the outer eyewall (now the singular primary eyewall) experienced an upwind shift in the precipitation and vertical velocity asymmetries. The updraft maximum shifted from the downshear-left quadrant to the downshear-right quadrant, and the precipitation maximum (downwind of the updraft maximum) shifted from left-of-shear to the downshear direction. This shift corroborates previous studies, which hypothesize that at the end of an ERC, the forcing mechanism that drives the eyewall vertical velocity asymmetry transitions from MDI/cold-pool processes to direct interaction with the environmental wind shear.\",\"PeriodicalId\":18824,\"journal\":{\"name\":\"Monthly Weather Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monthly Weather Review\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/mwr-d-23-0129.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Weather Review","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/mwr-d-23-0129.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Asymmetries During Eyewall Replacement Cycles of Hurricane Ivan (2004)
The physical processes that govern eyewall replacement cycles (ERCs) in tropical cyclones (TCs) are not yet fully understood. In particular, asymmetric structures within the TC inner core have an uncertain role in ERC dynamics. This study analyzes the kinematic and precipitation asymmetric structures during successive ERCs in Hurricane Ivan (2004) using airborne Doppler radar observations. The azimuthal locations of these asymmetries are analyzed relative to the deep-layer (850-200 hPa) environmental wind shear vector. Two ERCs were analyzed at different stages of their evolution. During the concentric eyewall stage of the first ERC, the outer eyewall updrafts were strongest in the left-of-shear half, which also coincided with mesoscale descending inflow (MDI) just radially outward. Enhanced low-level convergence, updrafts, and MDI were collocated in an zone spiraling inward towards the strongest outer eyewall updrafts, suggesting that the vertical velocity asymmetry in the outer eyewall was possibly forced by a stratiform-induced cold pool similar to MDI impacts seen in past TC studies. During the final stage of the second ERC, the outer eyewall (now the singular primary eyewall) experienced an upwind shift in the precipitation and vertical velocity asymmetries. The updraft maximum shifted from the downshear-left quadrant to the downshear-right quadrant, and the precipitation maximum (downwind of the updraft maximum) shifted from left-of-shear to the downshear direction. This shift corroborates previous studies, which hypothesize that at the end of an ERC, the forcing mechanism that drives the eyewall vertical velocity asymmetry transitions from MDI/cold-pool processes to direct interaction with the environmental wind shear.
期刊介绍:
Monthly Weather Review (MWR) (ISSN: 0027-0644; eISSN: 1520-0493) publishes research relevant to the analysis and prediction of observed atmospheric circulations and physics, including technique development, data assimilation, model validation, and relevant case studies. This research includes numerical and data assimilation techniques that apply to the atmosphere and/or ocean environments. MWR also addresses phenomena having seasonal and subseasonal time scales.