具有流量限制和逻辑源的趋化系统中的有界性和有限时间爆炸

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Shohei Kohatsu
{"title":"具有流量限制和逻辑源的趋化系统中的有界性和有限时间爆炸","authors":"Shohei Kohatsu","doi":"10.1007/s10440-024-00653-2","DOIUrl":null,"url":null,"abstract":"<div><p>The chemotaxis system </p><div><div><span> $$\\begin{aligned} \\textstyle\\begin{cases} u_{t}=\\Delta u - \\chi \\nabla \\cdot (u|\\nabla v|^{p-2}\\nabla v) + \\lambda u - \\mu u^{\\kappa }, \\\\ 0=\\Delta v + u - h(u,v) \\end{cases}\\displaystyle \\end{aligned}$$ </span></div><div>\n (∗)\n </div></div><p> is considered in a smoothly bounded domain <span>\\(\\Omega \\subset \\mathbb{R}^{n}\\)</span> (<span>\\(n \\in \\mathbb{N}\\)</span>), where <span>\\(\\chi &gt; 0\\)</span>, <span>\\(p &gt; 1\\)</span>, <span>\\(\\lambda \\ge 0\\)</span>, <span>\\(\\mu &gt; 0\\)</span>, <span>\\(\\kappa &gt; 1\\)</span>, and <span>\\(h = v\\)</span> or <span>\\(h = \\frac{1}{|\\Omega |} \\int _{\\Omega } u\\)</span>. It is firstly proved that if <span>\\(n = 1\\)</span> and <span>\\(p &gt; 1\\)</span> is arbitrary, or <span>\\(n \\ge 2\\)</span> and <span>\\(p \\in (1, \\frac{n}{n-1})\\)</span>, then for all continuous initial data a corresponding no-flux type initial-boundary value problem for <span>\\((\\ast )\\)</span> admits a globally defined and bounded weak solution. Secondly, it is shown that if <span>\\(n \\ge 2\\)</span>, <span>\\(\\Omega = B_{R}(0) \\subset \\mathbb{R}^{n}\\)</span> is a ball with some <span>\\(R &gt; 0\\)</span>, <span>\\(p &gt; \\frac{n}{n-1}\\)</span> and <span>\\(\\kappa &gt; 1\\)</span> is small enough, then one can find a nonnegative radially symmetric function <span>\\(u_{0}\\)</span> and a weak solution of <span>\\((\\ast )\\)</span> with initial datum <span>\\(u_{0}\\)</span> which blows up in finite time.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"191 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundedness and Finite-Time Blow-up in a Chemotaxis System with Flux Limitation and Logistic Source\",\"authors\":\"Shohei Kohatsu\",\"doi\":\"10.1007/s10440-024-00653-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The chemotaxis system </p><div><div><span> $$\\\\begin{aligned} \\\\textstyle\\\\begin{cases} u_{t}=\\\\Delta u - \\\\chi \\\\nabla \\\\cdot (u|\\\\nabla v|^{p-2}\\\\nabla v) + \\\\lambda u - \\\\mu u^{\\\\kappa }, \\\\\\\\ 0=\\\\Delta v + u - h(u,v) \\\\end{cases}\\\\displaystyle \\\\end{aligned}$$ </span></div><div>\\n (∗)\\n </div></div><p> is considered in a smoothly bounded domain <span>\\\\(\\\\Omega \\\\subset \\\\mathbb{R}^{n}\\\\)</span> (<span>\\\\(n \\\\in \\\\mathbb{N}\\\\)</span>), where <span>\\\\(\\\\chi &gt; 0\\\\)</span>, <span>\\\\(p &gt; 1\\\\)</span>, <span>\\\\(\\\\lambda \\\\ge 0\\\\)</span>, <span>\\\\(\\\\mu &gt; 0\\\\)</span>, <span>\\\\(\\\\kappa &gt; 1\\\\)</span>, and <span>\\\\(h = v\\\\)</span> or <span>\\\\(h = \\\\frac{1}{|\\\\Omega |} \\\\int _{\\\\Omega } u\\\\)</span>. It is firstly proved that if <span>\\\\(n = 1\\\\)</span> and <span>\\\\(p &gt; 1\\\\)</span> is arbitrary, or <span>\\\\(n \\\\ge 2\\\\)</span> and <span>\\\\(p \\\\in (1, \\\\frac{n}{n-1})\\\\)</span>, then for all continuous initial data a corresponding no-flux type initial-boundary value problem for <span>\\\\((\\\\ast )\\\\)</span> admits a globally defined and bounded weak solution. Secondly, it is shown that if <span>\\\\(n \\\\ge 2\\\\)</span>, <span>\\\\(\\\\Omega = B_{R}(0) \\\\subset \\\\mathbb{R}^{n}\\\\)</span> is a ball with some <span>\\\\(R &gt; 0\\\\)</span>, <span>\\\\(p &gt; \\\\frac{n}{n-1}\\\\)</span> and <span>\\\\(\\\\kappa &gt; 1\\\\)</span> is small enough, then one can find a nonnegative radially symmetric function <span>\\\\(u_{0}\\\\)</span> and a weak solution of <span>\\\\((\\\\ast )\\\\)</span> with initial datum <span>\\\\(u_{0}\\\\)</span> which blows up in finite time.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"191 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-024-00653-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00653-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

趋化系统 $$\begin{aligned}\u_{t}=\Delta u - \chi \nabla \cdot (u|\nabla v|^{p-2}\nabla v) + \lambda u - \mu u^{\kappa }, \0=\Delta v + u - h(u. v)、v) (∗)是在一个平滑有界域 \(\Omega \子集 \mathbb{R}^{n}\) ((n \in \mathbb{N}\) 中考虑的,其中 \(\chi >;0\),\(p > 1\),\(\lambda\ge 0\),\(\mu > 0\),\(\kappa > 1\), and\(h = v\) or\(h = \frac{1}{|\Omega |} \int _{\Omega } u\).首先证明的是:如果 \(n = 1\) 和 \(p > 1\) 是任意的,或者 \(n \ge 2\) 和 \(p \in (1, \frac{n}{n-1})\) ,那么对于所有连续的初始数据,一个相应的无流型初界值问题对于 \((\ast )\) 都有一个全局定义的和有界的弱解。其次,研究表明,如果(n \ge 2\), (Omega = B_{R}(0) \subset \mathbb{R}^{n})是一个球,且(R > 0\), (p > \frac{n}{n-1})和(kappa >;1)足够小,那么我们就可以找到一个非负的径向对称函数\(u_{0}\)和一个弱解,它的初始数据\(u_{0}\)会在有限的时间内爆炸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundedness and Finite-Time Blow-up in a Chemotaxis System with Flux Limitation and Logistic Source

The chemotaxis system

$$\begin{aligned} \textstyle\begin{cases} u_{t}=\Delta u - \chi \nabla \cdot (u|\nabla v|^{p-2}\nabla v) + \lambda u - \mu u^{\kappa }, \\ 0=\Delta v + u - h(u,v) \end{cases}\displaystyle \end{aligned}$$
(∗)

is considered in a smoothly bounded domain \(\Omega \subset \mathbb{R}^{n}\) (\(n \in \mathbb{N}\)), where \(\chi > 0\), \(p > 1\), \(\lambda \ge 0\), \(\mu > 0\), \(\kappa > 1\), and \(h = v\) or \(h = \frac{1}{|\Omega |} \int _{\Omega } u\). It is firstly proved that if \(n = 1\) and \(p > 1\) is arbitrary, or \(n \ge 2\) and \(p \in (1, \frac{n}{n-1})\), then for all continuous initial data a corresponding no-flux type initial-boundary value problem for \((\ast )\) admits a globally defined and bounded weak solution. Secondly, it is shown that if \(n \ge 2\), \(\Omega = B_{R}(0) \subset \mathbb{R}^{n}\) is a ball with some \(R > 0\), \(p > \frac{n}{n-1}\) and \(\kappa > 1\) is small enough, then one can find a nonnegative radially symmetric function \(u_{0}\) and a weak solution of \((\ast )\) with initial datum \(u_{0}\) which blows up in finite time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信