艾滋病毒/艾滋病传播与公众意识的数学建模

Irma Fauziah, Muhammad Manaqib, Elisda Mieldhania Zhafirah
{"title":"艾滋病毒/艾滋病传播与公众意识的数学建模","authors":"Irma Fauziah, Muhammad Manaqib, Elisda Mieldhania Zhafirah","doi":"10.18860/ca.v9i1.23424","DOIUrl":null,"url":null,"abstract":"This study develops mathematical model for the spread of HIV/AIDS by the population is divided into seven sub-populations, namely the susceptible unaware HIV subpopulation, the susceptible aware HIV sub-population, the infected sub-population, the pre-AIDS sub-population, the ARV treatment sub-population, the AIDS sub-population, and unlikely to be infected with HIV/AIDS sub-population. In this mathematical model, two equilibrium points are obtained, namely the disease-free equilibrium point and the disease-endemic equilibrium point and the basic reproduction number . The stability analysis shows that the disease-free equilibrium point is locally asymptotically stable if  and the disease-endemic equilibrium point is locally asymptotically stable if . Numerical simulations of the equilibrium points are carried out to provide an overview of the analyzed results with parameter values from several sources. Based on the sensitivity analysis, the parameters that significantly affect the spread of HIV/AIDS are the contact rate of HIV-unaware individuals with infected individuals and the transmission rate of HIV infection","PeriodicalId":388519,"journal":{"name":"CAUCHY: Jurnal Matematika Murni dan Aplikasi","volume":"32 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Modeling of HIV/AIDS Disease Spread with Public Awareness\",\"authors\":\"Irma Fauziah, Muhammad Manaqib, Elisda Mieldhania Zhafirah\",\"doi\":\"10.18860/ca.v9i1.23424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study develops mathematical model for the spread of HIV/AIDS by the population is divided into seven sub-populations, namely the susceptible unaware HIV subpopulation, the susceptible aware HIV sub-population, the infected sub-population, the pre-AIDS sub-population, the ARV treatment sub-population, the AIDS sub-population, and unlikely to be infected with HIV/AIDS sub-population. In this mathematical model, two equilibrium points are obtained, namely the disease-free equilibrium point and the disease-endemic equilibrium point and the basic reproduction number . The stability analysis shows that the disease-free equilibrium point is locally asymptotically stable if  and the disease-endemic equilibrium point is locally asymptotically stable if . Numerical simulations of the equilibrium points are carried out to provide an overview of the analyzed results with parameter values from several sources. Based on the sensitivity analysis, the parameters that significantly affect the spread of HIV/AIDS are the contact rate of HIV-unaware individuals with infected individuals and the transmission rate of HIV infection\",\"PeriodicalId\":388519,\"journal\":{\"name\":\"CAUCHY: Jurnal Matematika Murni dan Aplikasi\",\"volume\":\"32 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAUCHY: Jurnal Matematika Murni dan Aplikasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18860/ca.v9i1.23424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAUCHY: Jurnal Matematika Murni dan Aplikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18860/ca.v9i1.23424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究建立了艾滋病毒/艾滋病传播的数学模型,将人群划分为七个亚人群,即未意识到艾滋病毒/艾滋病的易感人群、意识到艾滋病毒/艾滋病的易感人群、已感染艾滋病毒/艾滋病的亚人群、艾滋病前亚人群、接受抗逆转录病毒治疗的亚人群、艾滋病亚人群和不可能感染艾滋病毒/艾滋病的亚人群。在这个数学模型中,得到了两个平衡点,即无疾病平衡点和疾病流行平衡点,以及基本繁殖数 。稳定性分析表明,如果 ,则无病平衡点局部渐近稳定;如果 ,则疾病流行平衡点局部渐近稳定。我们对平衡点进行了数值模拟,以概述在多个参数值下的分析结果。根据敏感性分析,对艾滋病毒/艾滋病传播有重大影响的参数是艾滋病毒未感知者与感染者的接触率和艾滋病毒感染的传播率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical Modeling of HIV/AIDS Disease Spread with Public Awareness
This study develops mathematical model for the spread of HIV/AIDS by the population is divided into seven sub-populations, namely the susceptible unaware HIV subpopulation, the susceptible aware HIV sub-population, the infected sub-population, the pre-AIDS sub-population, the ARV treatment sub-population, the AIDS sub-population, and unlikely to be infected with HIV/AIDS sub-population. In this mathematical model, two equilibrium points are obtained, namely the disease-free equilibrium point and the disease-endemic equilibrium point and the basic reproduction number . The stability analysis shows that the disease-free equilibrium point is locally asymptotically stable if  and the disease-endemic equilibrium point is locally asymptotically stable if . Numerical simulations of the equilibrium points are carried out to provide an overview of the analyzed results with parameter values from several sources. Based on the sensitivity analysis, the parameters that significantly affect the spread of HIV/AIDS are the contact rate of HIV-unaware individuals with infected individuals and the transmission rate of HIV infection
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信