立体压缩和仿射双唇隙同构

Pub Date : 2024-05-16 DOI:10.1017/s001708952400017x
Vincent Grandjean, Roger Oliveira
{"title":"立体压缩和仿射双唇隙同构","authors":"Vincent Grandjean, Roger Oliveira","doi":"10.1017/s001708952400017x","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>Let <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline1.png\"/>\n\t\t<jats:tex-math>\n$\\sigma _q \\,:\\,{{\\mathbb{R}}^q} \\to{\\textbf{S}}^q\\setminus N_q$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> be the inverse of the stereographic projection with center the north pole <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline2.png\"/>\n\t\t<jats:tex-math>\n$N_q$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. Let <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline3.png\"/>\n\t\t<jats:tex-math>\n$W_i$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> be a closed subset of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline4.png\"/>\n\t\t<jats:tex-math>\n${\\mathbb{R}}^{q_i}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, for <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline5.png\"/>\n\t\t<jats:tex-math>\n$i=1,2$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. Let <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline6.png\"/>\n\t\t<jats:tex-math>\n$\\Phi \\,:\\,W_1 \\to W_2$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> be a bi-Lipschitz homeomorphism. The main result states that the homeomorphism <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline7.png\"/>\n\t\t<jats:tex-math>\n$\\sigma _{q_2}\\circ \\Phi \\circ \\sigma _{q_1}^{-1}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is a bi-Lipschitz homeomorphism, extending bi-Lipschitz-ly at <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline8.png\"/>\n\t\t<jats:tex-math>\n$N_{q_1}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> with value <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline9.png\"/>\n\t\t<jats:tex-math>\n$N_{q_2}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> whenever <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline10.png\"/>\n\t\t<jats:tex-math>\n$W_1$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is unbounded.</jats:p>\n\t <jats:p>As two straightforward applications in the polynomially bounded o-minimal context over the real numbers, we obtain for free a version at infinity of: (1) Sampaio’s tangent cone result and (2) links preserving re-parametrization of definable bi-Lipschitz homeomorphisms of Valette.</jats:p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stereographic compactification and affine bi-Lipschitz homeomorphisms\",\"authors\":\"Vincent Grandjean, Roger Oliveira\",\"doi\":\"10.1017/s001708952400017x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\t <jats:p>Let <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400017X_inline1.png\\\"/>\\n\\t\\t<jats:tex-math>\\n$\\\\sigma _q \\\\,:\\\\,{{\\\\mathbb{R}}^q} \\\\to{\\\\textbf{S}}^q\\\\setminus N_q$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> be the inverse of the stereographic projection with center the north pole <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400017X_inline2.png\\\"/>\\n\\t\\t<jats:tex-math>\\n$N_q$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>. Let <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400017X_inline3.png\\\"/>\\n\\t\\t<jats:tex-math>\\n$W_i$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> be a closed subset of <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400017X_inline4.png\\\"/>\\n\\t\\t<jats:tex-math>\\n${\\\\mathbb{R}}^{q_i}$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>, for <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400017X_inline5.png\\\"/>\\n\\t\\t<jats:tex-math>\\n$i=1,2$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>. Let <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400017X_inline6.png\\\"/>\\n\\t\\t<jats:tex-math>\\n$\\\\Phi \\\\,:\\\\,W_1 \\\\to W_2$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> be a bi-Lipschitz homeomorphism. The main result states that the homeomorphism <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400017X_inline7.png\\\"/>\\n\\t\\t<jats:tex-math>\\n$\\\\sigma _{q_2}\\\\circ \\\\Phi \\\\circ \\\\sigma _{q_1}^{-1}$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> is a bi-Lipschitz homeomorphism, extending bi-Lipschitz-ly at <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400017X_inline8.png\\\"/>\\n\\t\\t<jats:tex-math>\\n$N_{q_1}$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> with value <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400017X_inline9.png\\\"/>\\n\\t\\t<jats:tex-math>\\n$N_{q_2}$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> whenever <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S001708952400017X_inline10.png\\\"/>\\n\\t\\t<jats:tex-math>\\n$W_1$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> is unbounded.</jats:p>\\n\\t <jats:p>As two straightforward applications in the polynomially bounded o-minimal context over the real numbers, we obtain for free a version at infinity of: (1) Sampaio’s tangent cone result and (2) links preserving re-parametrization of definable bi-Lipschitz homeomorphisms of Valette.</jats:p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s001708952400017x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s001708952400017x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让$\sigma _q \,:\,{{mathbb{R}}^q}成为以北极$N_q$为中心的立体投影的倒数。\to/{textbf{S}}^qsetminusN_q$是以北极$N_q$为中心的立体投影的倒数。让 $W_i$ 是 ${mathbb{R}}^{q_i}$ 的封闭子集,对于 $i=1,2$ 。让 $Phi \,:\,W_1 \to W_2$ 是一个双 Lipschitz 同态。主要结果指出,当 $W_1$ 无界时,同态 $\sigma _{q_2}\circ \Phi \circ \sigma _{q_1}^{-1}$ 是一个双利普齐兹同态,在 $N_{q_1}$ 处以 $N_{q_2}$ 的值双利普齐兹扩展。 作为在实数多项式有界 o-minimal 上下文中的两个直接应用,我们免费获得了无穷大时的版本:(1) 桑帕约的切锥结果和 (2) 瓦莱特的可定义双利浦齐兹同构的链接保存重参数化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Stereographic compactification and affine bi-Lipschitz homeomorphisms
Let $\sigma _q \,:\,{{\mathbb{R}}^q} \to{\textbf{S}}^q\setminus N_q$ be the inverse of the stereographic projection with center the north pole $N_q$ . Let $W_i$ be a closed subset of ${\mathbb{R}}^{q_i}$ , for $i=1,2$ . Let $\Phi \,:\,W_1 \to W_2$ be a bi-Lipschitz homeomorphism. The main result states that the homeomorphism $\sigma _{q_2}\circ \Phi \circ \sigma _{q_1}^{-1}$ is a bi-Lipschitz homeomorphism, extending bi-Lipschitz-ly at $N_{q_1}$ with value $N_{q_2}$ whenever $W_1$ is unbounded. As two straightforward applications in the polynomially bounded o-minimal context over the real numbers, we obtain for free a version at infinity of: (1) Sampaio’s tangent cone result and (2) links preserving re-parametrization of definable bi-Lipschitz homeomorphisms of Valette.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信