系统风险与银行网络:知识图谱与 ChatGPT 的应用

FinTech Pub Date : 2024-05-16 DOI:10.3390/fintech3020016
Ren-Yuan Lyu, Ren-Raw Chen, San-Lin Chung, Yilu Zhou
{"title":"系统风险与银行网络:知识图谱与 ChatGPT 的应用","authors":"Ren-Yuan Lyu, Ren-Raw Chen, San-Lin Chung, Yilu Zhou","doi":"10.3390/fintech3020016","DOIUrl":null,"url":null,"abstract":"In this paper, we study the networks of financial institutions using textual data (i.e., news). We draw knowledge graphs after the textual data has been processed via various natural language processing and embedding methods, including use of the most recent version of ChatGPT (via OpenAI api). Our final graphs represent bank networks and further shed light on the systemic risk of the financial institutions. Financial news reflects live how financial institutions are connected, via graphs which provide information on conditional dependencies among the financial institutions. Our results show that in the year 2016, the chosen 22 top U.S. financial firms are not closely connected and, hence, present no systemic risk.","PeriodicalId":472258,"journal":{"name":"FinTech","volume":"29 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systemic Risk and Bank Networks: A Use of Knowledge Graph with ChatGPT\",\"authors\":\"Ren-Yuan Lyu, Ren-Raw Chen, San-Lin Chung, Yilu Zhou\",\"doi\":\"10.3390/fintech3020016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the networks of financial institutions using textual data (i.e., news). We draw knowledge graphs after the textual data has been processed via various natural language processing and embedding methods, including use of the most recent version of ChatGPT (via OpenAI api). Our final graphs represent bank networks and further shed light on the systemic risk of the financial institutions. Financial news reflects live how financial institutions are connected, via graphs which provide information on conditional dependencies among the financial institutions. Our results show that in the year 2016, the chosen 22 top U.S. financial firms are not closely connected and, hence, present no systemic risk.\",\"PeriodicalId\":472258,\"journal\":{\"name\":\"FinTech\",\"volume\":\"29 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FinTech\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.3390/fintech3020016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FinTech","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.3390/fintech3020016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们使用文本数据(即新闻)研究金融机构的网络。在通过各种自然语言处理和嵌入方法(包括使用最新版本的 ChatGPT(通过 OpenAI api))对文本数据进行处理后,我们绘制了知识图谱。我们最终绘制的图表代表了银行网络,并进一步揭示了金融机构的系统性风险。金融新闻通过提供金融机构之间条件依赖关系信息的图表,实时反映了金融机构之间的联系。我们的结果表明,在 2016 年,所选的 22 家美国顶级金融公司之间的联系并不紧密,因此不存在系统性风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systemic Risk and Bank Networks: A Use of Knowledge Graph with ChatGPT
In this paper, we study the networks of financial institutions using textual data (i.e., news). We draw knowledge graphs after the textual data has been processed via various natural language processing and embedding methods, including use of the most recent version of ChatGPT (via OpenAI api). Our final graphs represent bank networks and further shed light on the systemic risk of the financial institutions. Financial news reflects live how financial institutions are connected, via graphs which provide information on conditional dependencies among the financial institutions. Our results show that in the year 2016, the chosen 22 top U.S. financial firms are not closely connected and, hence, present no systemic risk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信