{"title":"高临界维度以上分形时间过程的临界指数和普遍性","authors":"Shaolong Zeng, Yangfan Hu, Shijing Tan, Biao Wang","doi":"10.3390/fractalfract8050294","DOIUrl":null,"url":null,"abstract":"We study the critical behaviors of systems undergoing fractal time processes above the upper critical dimension. We derive a set of novel critical exponents, irrespective of the order of the fractional time derivative or the particular form of interaction in the Hamiltonian. For fractal time processes, we not only discover new universality classes with a dimensional constant but also decompose the dangerous irrelevant variables to obtain corrections for critical dynamic behavior and static critical properties. This contrasts with the traditional theory of critical phenomena, which posits that static critical exponents are unrelated to the dynamical processes. Simulations of the Landau–Ginzburg model for fractal time processes and the Ising model with temporal long-range interactions both show good agreement with our set of critical exponents, verifying its universality. The discovery of this new universality class provides a method for examining whether a system is undergoing a fractal time process near the critical point.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical Exponents and Universality for Fractal Time Processes above the Upper Critical Dimensionality\",\"authors\":\"Shaolong Zeng, Yangfan Hu, Shijing Tan, Biao Wang\",\"doi\":\"10.3390/fractalfract8050294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the critical behaviors of systems undergoing fractal time processes above the upper critical dimension. We derive a set of novel critical exponents, irrespective of the order of the fractional time derivative or the particular form of interaction in the Hamiltonian. For fractal time processes, we not only discover new universality classes with a dimensional constant but also decompose the dangerous irrelevant variables to obtain corrections for critical dynamic behavior and static critical properties. This contrasts with the traditional theory of critical phenomena, which posits that static critical exponents are unrelated to the dynamical processes. Simulations of the Landau–Ginzburg model for fractal time processes and the Ising model with temporal long-range interactions both show good agreement with our set of critical exponents, verifying its universality. The discovery of this new universality class provides a method for examining whether a system is undergoing a fractal time process near the critical point.\",\"PeriodicalId\":12435,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract8050294\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract8050294","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Critical Exponents and Universality for Fractal Time Processes above the Upper Critical Dimensionality
We study the critical behaviors of systems undergoing fractal time processes above the upper critical dimension. We derive a set of novel critical exponents, irrespective of the order of the fractional time derivative or the particular form of interaction in the Hamiltonian. For fractal time processes, we not only discover new universality classes with a dimensional constant but also decompose the dangerous irrelevant variables to obtain corrections for critical dynamic behavior and static critical properties. This contrasts with the traditional theory of critical phenomena, which posits that static critical exponents are unrelated to the dynamical processes. Simulations of the Landau–Ginzburg model for fractal time processes and the Ising model with temporal long-range interactions both show good agreement with our set of critical exponents, verifying its universality. The discovery of this new universality class provides a method for examining whether a system is undergoing a fractal time process near the critical point.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.