{"title":"带反射的奇异积分微分方程的可解性与显解","authors":"A. S. Nagdy, KH. M. Hashem, H. E. H. Ebrahim","doi":"10.1155/2024/5523649","DOIUrl":null,"url":null,"abstract":"This article deals with a classes of singular integral–differential equations with convolution kernel and reflection. By means of the theory of boundary value problems of analytic functions and the theory of Fourier analysis, such equations can be transformed into Riemann boundary value problems (i.e., Riemann–Hilbert problems) with nodes and reflection. For such problems, we propose a novel method different from classical one, by which the explicit solutions and the conditions of solvability are obtained.","PeriodicalId":7061,"journal":{"name":"Abstract and Applied Analysis","volume":"32 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Solvability and Explicit Solutions of Singular Integral–Differential Equations with Reflection\",\"authors\":\"A. S. Nagdy, KH. M. Hashem, H. E. H. Ebrahim\",\"doi\":\"10.1155/2024/5523649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article deals with a classes of singular integral–differential equations with convolution kernel and reflection. By means of the theory of boundary value problems of analytic functions and the theory of Fourier analysis, such equations can be transformed into Riemann boundary value problems (i.e., Riemann–Hilbert problems) with nodes and reflection. For such problems, we propose a novel method different from classical one, by which the explicit solutions and the conditions of solvability are obtained.\",\"PeriodicalId\":7061,\"journal\":{\"name\":\"Abstract and Applied Analysis\",\"volume\":\"32 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abstract and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5523649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/5523649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
The Solvability and Explicit Solutions of Singular Integral–Differential Equations with Reflection
This article deals with a classes of singular integral–differential equations with convolution kernel and reflection. By means of the theory of boundary value problems of analytic functions and the theory of Fourier analysis, such equations can be transformed into Riemann boundary value problems (i.e., Riemann–Hilbert problems) with nodes and reflection. For such problems, we propose a novel method different from classical one, by which the explicit solutions and the conditions of solvability are obtained.
期刊介绍:
Abstract and Applied Analysis is a mathematical journal devoted exclusively to the publication of high-quality research papers in the fields of abstract and applied analysis. Emphasis is placed on important developments in classical analysis, linear and nonlinear functional analysis, ordinary and partial differential equations, optimization theory, and control theory. Abstract and Applied Analysis supports the publication of original material involving the complete solution of significant problems in the above disciplines. Abstract and Applied Analysis also encourages the publication of timely and thorough survey articles on current trends in the theory and applications of analysis.