带反射的奇异积分微分方程的可解性与显解

Q3 Mathematics
A. S. Nagdy, KH. M. Hashem, H. E. H. Ebrahim
{"title":"带反射的奇异积分微分方程的可解性与显解","authors":"A. S. Nagdy, KH. M. Hashem, H. E. H. Ebrahim","doi":"10.1155/2024/5523649","DOIUrl":null,"url":null,"abstract":"This article deals with a classes of singular integral–differential equations with convolution kernel and reflection. By means of the theory of boundary value problems of analytic functions and the theory of Fourier analysis, such equations can be transformed into Riemann boundary value problems (i.e., Riemann–Hilbert problems) with nodes and reflection. For such problems, we propose a novel method different from classical one, by which the explicit solutions and the conditions of solvability are obtained.","PeriodicalId":7061,"journal":{"name":"Abstract and Applied Analysis","volume":"32 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Solvability and Explicit Solutions of Singular Integral–Differential Equations with Reflection\",\"authors\":\"A. S. Nagdy, KH. M. Hashem, H. E. H. Ebrahim\",\"doi\":\"10.1155/2024/5523649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article deals with a classes of singular integral–differential equations with convolution kernel and reflection. By means of the theory of boundary value problems of analytic functions and the theory of Fourier analysis, such equations can be transformed into Riemann boundary value problems (i.e., Riemann–Hilbert problems) with nodes and reflection. For such problems, we propose a novel method different from classical one, by which the explicit solutions and the conditions of solvability are obtained.\",\"PeriodicalId\":7061,\"journal\":{\"name\":\"Abstract and Applied Analysis\",\"volume\":\"32 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abstract and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5523649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/5523649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论一类具有卷积核和反射的奇异积分微分方程。通过解析函数边界值问题理论和傅立叶分析理论,这类方程可以转化为带有节点和反射的黎曼边界值问题(即黎曼-希尔伯特问题)。对于这类问题,我们提出了一种不同于经典方法的新方法,通过这种方法可以获得显式解和可解条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Solvability and Explicit Solutions of Singular Integral–Differential Equations with Reflection
This article deals with a classes of singular integral–differential equations with convolution kernel and reflection. By means of the theory of boundary value problems of analytic functions and the theory of Fourier analysis, such equations can be transformed into Riemann boundary value problems (i.e., Riemann–Hilbert problems) with nodes and reflection. For such problems, we propose a novel method different from classical one, by which the explicit solutions and the conditions of solvability are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
36
审稿时长
3.5 months
期刊介绍: Abstract and Applied Analysis is a mathematical journal devoted exclusively to the publication of high-quality research papers in the fields of abstract and applied analysis. Emphasis is placed on important developments in classical analysis, linear and nonlinear functional analysis, ordinary and partial differential equations, optimization theory, and control theory. Abstract and Applied Analysis supports the publication of original material involving the complete solution of significant problems in the above disciplines. Abstract and Applied Analysis also encourages the publication of timely and thorough survey articles on current trends in the theory and applications of analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信