{"title":"受周期性入流扰动的低压涡轮级联内壁流的特征描述,第 1 部分:利用锁相粒子图像测速仪进行流场研究","authors":"Tobias Schubert, D. Kožulović, Martin Bitter","doi":"10.3390/aerospace11050403","DOIUrl":null,"url":null,"abstract":"Particle image velocimetry (PIV) measurements were performed inside a low-pressure turbine cascade operating at engine-relevant high-speed and low-Re conditions to investigate the near-endwall flow. Of particular research interest was the dominant periodic disturbance of the flow field by incoming wakes, which were generated by moving cylindrical bars at a frequency of 500 Hz. Two PIV setups were utilized to resolve both (1) a large blade-to-blade plane close to the endwall as well as midspan and (2) the wake effects in an axial flow field downstream of the blade passage. The measurements were performed using a phase-locked approach in order to align and compare the results with comprehensive CFD data that are also available for this test case. The experimental results not only support a better understanding and even a quantification of the wake-induced over/under-turning inside and downstream of the passage, they also enable the tracing of the `negative-jet-effect’, which is widely known in the CFD branch of the turbomachinery community but is seldom visualized in experiments. The results also reveal that the bar wake periodically widens the blade wake by up to 165%, while the secondary flow is less affected and exhibits a phase lag with respect to the 2D-flow effects. The results presented here are an essential basis for the subsequent investigation of the near-endwall blade suction surface effects using unsteady pressure-sensitive paint in the second part of this two-part publication.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterization of the Endwall Flow in a Low-Pressure Turbine Cascade Perturbed by Periodically Incoming Wakes, Part 1: Flow Field Investigations with Phase-Locked Particle Image Velocimetry\",\"authors\":\"Tobias Schubert, D. Kožulović, Martin Bitter\",\"doi\":\"10.3390/aerospace11050403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle image velocimetry (PIV) measurements were performed inside a low-pressure turbine cascade operating at engine-relevant high-speed and low-Re conditions to investigate the near-endwall flow. Of particular research interest was the dominant periodic disturbance of the flow field by incoming wakes, which were generated by moving cylindrical bars at a frequency of 500 Hz. Two PIV setups were utilized to resolve both (1) a large blade-to-blade plane close to the endwall as well as midspan and (2) the wake effects in an axial flow field downstream of the blade passage. The measurements were performed using a phase-locked approach in order to align and compare the results with comprehensive CFD data that are also available for this test case. The experimental results not only support a better understanding and even a quantification of the wake-induced over/under-turning inside and downstream of the passage, they also enable the tracing of the `negative-jet-effect’, which is widely known in the CFD branch of the turbomachinery community but is seldom visualized in experiments. The results also reveal that the bar wake periodically widens the blade wake by up to 165%, while the secondary flow is less affected and exhibits a phase lag with respect to the 2D-flow effects. The results presented here are an essential basis for the subsequent investigation of the near-endwall blade suction surface effects using unsteady pressure-sensitive paint in the second part of this two-part publication.\",\"PeriodicalId\":48525,\"journal\":{\"name\":\"Aerospace\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace11050403\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11050403","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Characterization of the Endwall Flow in a Low-Pressure Turbine Cascade Perturbed by Periodically Incoming Wakes, Part 1: Flow Field Investigations with Phase-Locked Particle Image Velocimetry
Particle image velocimetry (PIV) measurements were performed inside a low-pressure turbine cascade operating at engine-relevant high-speed and low-Re conditions to investigate the near-endwall flow. Of particular research interest was the dominant periodic disturbance of the flow field by incoming wakes, which were generated by moving cylindrical bars at a frequency of 500 Hz. Two PIV setups were utilized to resolve both (1) a large blade-to-blade plane close to the endwall as well as midspan and (2) the wake effects in an axial flow field downstream of the blade passage. The measurements were performed using a phase-locked approach in order to align and compare the results with comprehensive CFD data that are also available for this test case. The experimental results not only support a better understanding and even a quantification of the wake-induced over/under-turning inside and downstream of the passage, they also enable the tracing of the `negative-jet-effect’, which is widely known in the CFD branch of the turbomachinery community but is seldom visualized in experiments. The results also reveal that the bar wake periodically widens the blade wake by up to 165%, while the secondary flow is less affected and exhibits a phase lag with respect to the 2D-flow effects. The results presented here are an essential basis for the subsequent investigation of the near-endwall blade suction surface effects using unsteady pressure-sensitive paint in the second part of this two-part publication.
期刊介绍:
Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.