{"title":"整体优势:统一定量建模,深入洞察(社会)语言变异,减少偏见","authors":"Wilkinson Daniel Wong Gonzales","doi":"10.3390/languages9050182","DOIUrl":null,"url":null,"abstract":"What happens when recognized and diverse conditioning factors of linguistic variation are omitted from analysis and/or are not analyzed under a single analytical procedure? This paper explores the consequences of such a choice on data interpretation and, consequently, (socio)linguistic theorization. Utilizing Twitter-style English in the Philippines (EngPH) as a case study, I employ the Twitter Corpus of Philippine Englishes (TCOPE) primarily to investigate and elucidate variations in three morphosyntactic variables that have been previously examined using a piecemeal approach. I propose a holistic quantitative approach that incorporates documented linguistic, social, diachronic, and stylistic factors in a unified analysis. The paper illustrates the impacts of adopting this holistic approach through two statistical procedures: Bayesian regression modeling and Boruta feature selection with random forest modeling. In contrast to earlier research findings, my overall results reveal biases in non-unified quantitative analyses, where the confidence in the effects of certain factors diminishes in light of others during analysis. The adoption of a unified analysis or modeling also enhances the resolution at which variations have been examined in EngPH. For instance, it highlights that presumed ‘universals’, such as the hierarchy of linguistic > stylistic > diachronic > social factors in explaining variation in some domains, is contingent on the specific variable under examination. Overall, I argue that unified analyses reduce data distortion and introduce more nuanced interpretations and insights that are critical for establishing a well-grounded empirical theory of EngPH variation and language variation as a whole.","PeriodicalId":52329,"journal":{"name":"Languages","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Holistic Advantage: Unified Quantitative Modeling for Less-Biased, In-Depth Insights into (Socio)Linguistic Variation\",\"authors\":\"Wilkinson Daniel Wong Gonzales\",\"doi\":\"10.3390/languages9050182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"What happens when recognized and diverse conditioning factors of linguistic variation are omitted from analysis and/or are not analyzed under a single analytical procedure? This paper explores the consequences of such a choice on data interpretation and, consequently, (socio)linguistic theorization. Utilizing Twitter-style English in the Philippines (EngPH) as a case study, I employ the Twitter Corpus of Philippine Englishes (TCOPE) primarily to investigate and elucidate variations in three morphosyntactic variables that have been previously examined using a piecemeal approach. I propose a holistic quantitative approach that incorporates documented linguistic, social, diachronic, and stylistic factors in a unified analysis. The paper illustrates the impacts of adopting this holistic approach through two statistical procedures: Bayesian regression modeling and Boruta feature selection with random forest modeling. In contrast to earlier research findings, my overall results reveal biases in non-unified quantitative analyses, where the confidence in the effects of certain factors diminishes in light of others during analysis. The adoption of a unified analysis or modeling also enhances the resolution at which variations have been examined in EngPH. For instance, it highlights that presumed ‘universals’, such as the hierarchy of linguistic > stylistic > diachronic > social factors in explaining variation in some domains, is contingent on the specific variable under examination. Overall, I argue that unified analyses reduce data distortion and introduce more nuanced interpretations and insights that are critical for establishing a well-grounded empirical theory of EngPH variation and language variation as a whole.\",\"PeriodicalId\":52329,\"journal\":{\"name\":\"Languages\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/languages9050182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"LANGUAGE & LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/languages9050182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
The Holistic Advantage: Unified Quantitative Modeling for Less-Biased, In-Depth Insights into (Socio)Linguistic Variation
What happens when recognized and diverse conditioning factors of linguistic variation are omitted from analysis and/or are not analyzed under a single analytical procedure? This paper explores the consequences of such a choice on data interpretation and, consequently, (socio)linguistic theorization. Utilizing Twitter-style English in the Philippines (EngPH) as a case study, I employ the Twitter Corpus of Philippine Englishes (TCOPE) primarily to investigate and elucidate variations in three morphosyntactic variables that have been previously examined using a piecemeal approach. I propose a holistic quantitative approach that incorporates documented linguistic, social, diachronic, and stylistic factors in a unified analysis. The paper illustrates the impacts of adopting this holistic approach through two statistical procedures: Bayesian regression modeling and Boruta feature selection with random forest modeling. In contrast to earlier research findings, my overall results reveal biases in non-unified quantitative analyses, where the confidence in the effects of certain factors diminishes in light of others during analysis. The adoption of a unified analysis or modeling also enhances the resolution at which variations have been examined in EngPH. For instance, it highlights that presumed ‘universals’, such as the hierarchy of linguistic > stylistic > diachronic > social factors in explaining variation in some domains, is contingent on the specific variable under examination. Overall, I argue that unified analyses reduce data distortion and introduce more nuanced interpretations and insights that are critical for establishing a well-grounded empirical theory of EngPH variation and language variation as a whole.