{"title":"反自偶变形复数和辛格的一个猜想","authors":"A. Gover, M. Gursky","doi":"10.1515/crelle-2024-0028","DOIUrl":null,"url":null,"abstract":"\n <jats:p>Let <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:msup>\n <m:mi>M</m:mi>\n <m:mn>4</m:mn>\n </m:msup>\n <m:mo>,</m:mo>\n <m:mi>g</m:mi>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0028_ineq_0001.png\"/>\n <jats:tex-math>(M^{4},g)</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> be a smooth, closed, oriented anti-self-dual (ASD) four-manifold.\n<jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:msup>\n <m:mi>M</m:mi>\n <m:mn>4</m:mn>\n </m:msup>\n <m:mo>,</m:mo>\n <m:mi>g</m:mi>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0028_ineq_0001.png\"/>\n <jats:tex-math>(M^{4},g)</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> is said to be <jats:italic>unobstructed</jats:italic> if the cokernel of the linearisation of the self-dual Weyl tensor is trivial.\nThis condition can also be characterised as the vanishing of the second cohomology group of the ASD deformation complex, and is central to understanding the local structure of the moduli space of ASD conformal structures.\nIt also arises in construction of ASD manifolds by twistor and gluing methods.\nIn this article, we give conformally invariant conditions which imply an ASD manifold of positive Yamabe type is unobstructed.</jats:p>","PeriodicalId":508691,"journal":{"name":"Journal für die reine und angewandte Mathematik (Crelles Journal)","volume":"7 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The anti-self-dual deformation complex and a conjecture of Singer\",\"authors\":\"A. Gover, M. Gursky\",\"doi\":\"10.1515/crelle-2024-0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n <jats:p>Let <jats:inline-formula>\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:mo stretchy=\\\"false\\\">(</m:mo>\\n <m:msup>\\n <m:mi>M</m:mi>\\n <m:mn>4</m:mn>\\n </m:msup>\\n <m:mo>,</m:mo>\\n <m:mi>g</m:mi>\\n <m:mo stretchy=\\\"false\\\">)</m:mo>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0028_ineq_0001.png\\\"/>\\n <jats:tex-math>(M^{4},g)</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> be a smooth, closed, oriented anti-self-dual (ASD) four-manifold.\\n<jats:inline-formula>\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:mo stretchy=\\\"false\\\">(</m:mo>\\n <m:msup>\\n <m:mi>M</m:mi>\\n <m:mn>4</m:mn>\\n </m:msup>\\n <m:mo>,</m:mo>\\n <m:mi>g</m:mi>\\n <m:mo stretchy=\\\"false\\\">)</m:mo>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0028_ineq_0001.png\\\"/>\\n <jats:tex-math>(M^{4},g)</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> is said to be <jats:italic>unobstructed</jats:italic> if the cokernel of the linearisation of the self-dual Weyl tensor is trivial.\\nThis condition can also be characterised as the vanishing of the second cohomology group of the ASD deformation complex, and is central to understanding the local structure of the moduli space of ASD conformal structures.\\nIt also arises in construction of ASD manifolds by twistor and gluing methods.\\nIn this article, we give conformally invariant conditions which imply an ASD manifold of positive Yamabe type is unobstructed.</jats:p>\",\"PeriodicalId\":508691,\"journal\":{\"name\":\"Journal für die reine und angewandte Mathematik (Crelles Journal)\",\"volume\":\"7 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal für die reine und angewandte Mathematik (Crelles Journal)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2024-0028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal für die reine und angewandte Mathematik (Crelles Journal)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/crelle-2024-0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设 ( M 4 , g ) (M^{4},g) 是光滑、封闭、定向的反自偶(ASD)四曲面。 ( M 4 , g ) (M^{4},g) 如果自偶韦尔张量线性化的协核是微不足道的,就可以说它是无阻塞的。这个条件也可以表征为ASD变形复数的第二同调群的消失,它是理解ASD共形结构模空间局部结构的核心。
The anti-self-dual deformation complex and a conjecture of Singer
Let (M4,g)(M^{4},g) be a smooth, closed, oriented anti-self-dual (ASD) four-manifold.
(M4,g)(M^{4},g) is said to be unobstructed if the cokernel of the linearisation of the self-dual Weyl tensor is trivial.
This condition can also be characterised as the vanishing of the second cohomology group of the ASD deformation complex, and is central to understanding the local structure of the moduli space of ASD conformal structures.
It also arises in construction of ASD manifolds by twistor and gluing methods.
In this article, we give conformally invariant conditions which imply an ASD manifold of positive Yamabe type is unobstructed.