在全局路由中应用强化学习来学习最佳路由和重新路由

IF 2.2 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Upma Gandhi, Erfan Aghaeekiasaraee, Sahir, Payam Mousavi, Ismail S. K. Bustany, Mathew E. Taylor, Laleh Behjat
{"title":"在全局路由中应用强化学习来学习最佳路由和重新路由","authors":"Upma Gandhi, Erfan Aghaeekiasaraee, Sahir, Payam Mousavi, Ismail S. K. Bustany, Mathew E. Taylor, Laleh Behjat","doi":"10.1145/3664286","DOIUrl":null,"url":null,"abstract":"Physical designers typically employ heuristics to solve challenging problems in global routing. However, these heuristic solutions are not adaptable to the ever-changing fabrication demands, and the experience and creativity of designers can limit their effectiveness. Reinforcement learning (RL) is an effective method to tackle sequential optimization problems due to its ability to adapt and learn through trial and error. Hence, RL can create policies that can handle complex tasks. This work presents an RL framework for global routing that incorporates a self-learning model called RL-Ripper. The primary function of RL-Ripper is to identify the best nets that need to be ripped and rerouted in order to decrease the number of total short violations. In this work, we show that the proposed RL-Ripper framework’s approach can reduce the number of short violations for ISPD 2018 Benchmarks when compared to the state-of-the-art global router CUGR. Moreover, RL-Ripper reduced the total number of short violations after the first iteration of detailed routing over the baseline while being on par with the wirelength, VIA, and runtime. The proposed framework’s major impact is providing a novel learning-based approach to global routing that can be replicated for newer technologies.","PeriodicalId":50944,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying reinforcement learning to learn best net to rip and re-route in global routing\",\"authors\":\"Upma Gandhi, Erfan Aghaeekiasaraee, Sahir, Payam Mousavi, Ismail S. K. Bustany, Mathew E. Taylor, Laleh Behjat\",\"doi\":\"10.1145/3664286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physical designers typically employ heuristics to solve challenging problems in global routing. However, these heuristic solutions are not adaptable to the ever-changing fabrication demands, and the experience and creativity of designers can limit their effectiveness. Reinforcement learning (RL) is an effective method to tackle sequential optimization problems due to its ability to adapt and learn through trial and error. Hence, RL can create policies that can handle complex tasks. This work presents an RL framework for global routing that incorporates a self-learning model called RL-Ripper. The primary function of RL-Ripper is to identify the best nets that need to be ripped and rerouted in order to decrease the number of total short violations. In this work, we show that the proposed RL-Ripper framework’s approach can reduce the number of short violations for ISPD 2018 Benchmarks when compared to the state-of-the-art global router CUGR. Moreover, RL-Ripper reduced the total number of short violations after the first iteration of detailed routing over the baseline while being on par with the wirelength, VIA, and runtime. The proposed framework’s major impact is providing a novel learning-based approach to global routing that can be replicated for newer technologies.\",\"PeriodicalId\":50944,\"journal\":{\"name\":\"ACM Transactions on Design Automation of Electronic Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Design Automation of Electronic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3664286\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Design Automation of Electronic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3664286","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

物理设计人员通常采用启发式方法来解决全局布线中的难题。然而,这些启发式解决方案无法适应不断变化的制造需求,而且设计人员的经验和创造力也会限制其有效性。强化学习(RL)能够通过试验和错误进行调整和学习,是解决顺序优化问题的有效方法。因此,RL 可以创建能够处理复杂任务的策略。本研究提出了一个用于全局路由选择的 RL 框架,其中包含一个名为 RL-Ripper 的自学习模型。RL-Ripper 的主要功能是识别需要撕裂和重新路由的最佳网络,以减少总的短路违规次数。在这项工作中,我们表明,与最先进的全局路由器 CUGR 相比,所提出的 RL-Ripper 框架方法可以减少 ISPD 2018 基准的短违规次数。此外,与基线相比,RL-Ripper 减少了详细路由第一次迭代后的短路违规总数,同时在线长、VIA 和运行时间方面与基线持平。所提出框架的主要影响是为全局路由提供了一种基于学习的新方法,这种方法可以复制到更新的技术中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying reinforcement learning to learn best net to rip and re-route in global routing
Physical designers typically employ heuristics to solve challenging problems in global routing. However, these heuristic solutions are not adaptable to the ever-changing fabrication demands, and the experience and creativity of designers can limit their effectiveness. Reinforcement learning (RL) is an effective method to tackle sequential optimization problems due to its ability to adapt and learn through trial and error. Hence, RL can create policies that can handle complex tasks. This work presents an RL framework for global routing that incorporates a self-learning model called RL-Ripper. The primary function of RL-Ripper is to identify the best nets that need to be ripped and rerouted in order to decrease the number of total short violations. In this work, we show that the proposed RL-Ripper framework’s approach can reduce the number of short violations for ISPD 2018 Benchmarks when compared to the state-of-the-art global router CUGR. Moreover, RL-Ripper reduced the total number of short violations after the first iteration of detailed routing over the baseline while being on par with the wirelength, VIA, and runtime. The proposed framework’s major impact is providing a novel learning-based approach to global routing that can be replicated for newer technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Design Automation of Electronic Systems
ACM Transactions on Design Automation of Electronic Systems 工程技术-计算机:软件工程
CiteScore
3.20
自引率
7.10%
发文量
105
审稿时长
3 months
期刊介绍: TODAES is a premier ACM journal in design and automation of electronic systems. It publishes innovative work documenting significant research and development advances on the specification, design, analysis, simulation, testing, and evaluation of electronic systems, emphasizing a computer science/engineering orientation. Both theoretical analysis and practical solutions are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信