抗肿瘤药物Tyr-Ser-leu的构象特性和电子结构

G. Agaeva, U. Agaeva, N. Godjaev
{"title":"抗肿瘤药物Tyr-Ser-leu的构象特性和电子结构","authors":"G. Agaeva, U. Agaeva, N. Godjaev","doi":"10.29039/rusjbpc.2023.0582","DOIUrl":null,"url":null,"abstract":"Molecular modeling methods were used to study the features of the spatial and electronic structure of the antitumor tripeptide YSL (Tyr-Ser-Leu), developed by Chinese scientists. The conformational analysis of the molecule revealed a limited set of its energetically preferable conformational states in a certain range of relative energy. The nature of the forces stabilizing the low-energy conformations of the tripeptide molecule was determined. As a result of the study, the energetically preferable ranges of dihedral angles, the energy contributions of interresidual interactions and hydrogen bonds, as well as the mutual arrangement of residues and their side chains in low-energy conformations of the tripeptide were also determined. Using the methods of molecular mechanics, the energy contributions of intramolecular interactions in low-energy conformational states of the molecule were obtained. Based on quantum-chemical calculations, the distribution of electron density and the values of dipole moments of the most optimal spatial structures of the YSL tripeptide molecule were determined. The reactivity of the tripeptide was also studied by quantum chemical calculations based on the obtained electronic characteristics of each low-energy conformation of the molecule. Using the calculated coordinates of the atoms of the energetically preferable structures of the molecule, their molecular models were built, the comparison of which makes it possible to identify the structural criteria necessary to create a drug suitable for clinical use.","PeriodicalId":169374,"journal":{"name":"Russian Journal of Biological Physics and Chemisrty","volume":"57 38","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CONFORMATIONAL PROPERTIES AND ELECTRONİC STRUCTURE OF ANTİTUMOR AGENT TYR-SER-LEU\",\"authors\":\"G. Agaeva, U. Agaeva, N. Godjaev\",\"doi\":\"10.29039/rusjbpc.2023.0582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecular modeling methods were used to study the features of the spatial and electronic structure of the antitumor tripeptide YSL (Tyr-Ser-Leu), developed by Chinese scientists. The conformational analysis of the molecule revealed a limited set of its energetically preferable conformational states in a certain range of relative energy. The nature of the forces stabilizing the low-energy conformations of the tripeptide molecule was determined. As a result of the study, the energetically preferable ranges of dihedral angles, the energy contributions of interresidual interactions and hydrogen bonds, as well as the mutual arrangement of residues and their side chains in low-energy conformations of the tripeptide were also determined. Using the methods of molecular mechanics, the energy contributions of intramolecular interactions in low-energy conformational states of the molecule were obtained. Based on quantum-chemical calculations, the distribution of electron density and the values of dipole moments of the most optimal spatial structures of the YSL tripeptide molecule were determined. The reactivity of the tripeptide was also studied by quantum chemical calculations based on the obtained electronic characteristics of each low-energy conformation of the molecule. Using the calculated coordinates of the atoms of the energetically preferable structures of the molecule, their molecular models were built, the comparison of which makes it possible to identify the structural criteria necessary to create a drug suitable for clinical use.\",\"PeriodicalId\":169374,\"journal\":{\"name\":\"Russian Journal of Biological Physics and Chemisrty\",\"volume\":\"57 38\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Biological Physics and Chemisrty\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29039/rusjbpc.2023.0582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Biological Physics and Chemisrty","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29039/rusjbpc.2023.0582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分子建模方法用于研究中国科学家开发的抗肿瘤三肽YSL(Tyr-Ser-Leu)的空间和电子结构特征。通过对该分子的构象分析,发现了其在一定相对能量范围内的有限能量优选构象态。研究还确定了稳定三肽分子低能构象的力的性质。研究结果还确定了二面角的能量优选范围、残留物间相互作用和氢键的能量贡献,以及三肽低能构象中残留物及其侧链的相互排列。利用分子力学方法,获得了分子低能构象态中分子内相互作用的能量贡献。根据量子化学计算,确定了 YSL 三肽分子最理想空间结构的电子密度分布和偶极矩值。此外,还根据所获得的分子每个低能构象的电子特性,通过量子化学计算研究了三肽的反应性。利用计算出的分子能量优选结构的原子坐标,建立了它们的分子模型,通过对这些模型进行比较,可以确定制造适合临床使用的药物所需的结构标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CONFORMATIONAL PROPERTIES AND ELECTRONİC STRUCTURE OF ANTİTUMOR AGENT TYR-SER-LEU
Molecular modeling methods were used to study the features of the spatial and electronic structure of the antitumor tripeptide YSL (Tyr-Ser-Leu), developed by Chinese scientists. The conformational analysis of the molecule revealed a limited set of its energetically preferable conformational states in a certain range of relative energy. The nature of the forces stabilizing the low-energy conformations of the tripeptide molecule was determined. As a result of the study, the energetically preferable ranges of dihedral angles, the energy contributions of interresidual interactions and hydrogen bonds, as well as the mutual arrangement of residues and their side chains in low-energy conformations of the tripeptide were also determined. Using the methods of molecular mechanics, the energy contributions of intramolecular interactions in low-energy conformational states of the molecule were obtained. Based on quantum-chemical calculations, the distribution of electron density and the values of dipole moments of the most optimal spatial structures of the YSL tripeptide molecule were determined. The reactivity of the tripeptide was also studied by quantum chemical calculations based on the obtained electronic characteristics of each low-energy conformation of the molecule. Using the calculated coordinates of the atoms of the energetically preferable structures of the molecule, their molecular models were built, the comparison of which makes it possible to identify the structural criteria necessary to create a drug suitable for clinical use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信