{"title":"蒸散量测量、估算和验证模型、产品和技术综述","authors":"Mesut Bariş, Mustafa Tombul","doi":"10.1002/tqem.22250","DOIUrl":null,"url":null,"abstract":"<p>In this review study, the major available methods for measurement and estimation of evapotranspiration (ET) are discussed briefly while explaining the latest developments. The best available validation methods are also reviewed and explained. It highlights the importance of accurate ET quantification in managing water resources, evaluating climate change impacts, and supporting crop water requirement management. Measurement methods such as scintillometry, lysimetry, and the eddy covariance (EC) flux method are presented. Additionally, hydrological models are discussed as estimation approaches for actual and potential ET. The paper explores various ET estimation products, particularly those based on remote sensing techniques. Specifically, methods like Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC), Simplified Surface Energy Balance Operational (SSEBop ET), Moderate Resolution Imaging Spectroradiometer (MOD16), Surface Energy Balance Algorithm for Land (SEBAL), Global Land Surface Evaporation: Amsterdam Methodology (GLEAM), Satellite Application Facility on Land Surface Analysis (LSA-SAF), and Global Land Data Assimilation System (GLDAS) are described. The integration of machine learning (ML) with EC and remote sensing is investigated, with a comprehensive discussion of different ML approaches. Validation methods including the EC method, water balance method-derived ET (WBET), and statistical techniques are explained. Overall, this review paper provides a comprehensive overview of ET quantification, covering measurement techniques, estimation approaches, remote sensing methods, and the integration of ML. The insights gained from this review contribute to a profound knowledge of ET dynamics and helps those sectors dealing with drought monitoring, water resource management and climate change assessments.</p>","PeriodicalId":35327,"journal":{"name":"Environmental Quality Management","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on models, products and techniques for evapotranspiration measurement, estimation, and validation\",\"authors\":\"Mesut Bariş, Mustafa Tombul\",\"doi\":\"10.1002/tqem.22250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this review study, the major available methods for measurement and estimation of evapotranspiration (ET) are discussed briefly while explaining the latest developments. The best available validation methods are also reviewed and explained. It highlights the importance of accurate ET quantification in managing water resources, evaluating climate change impacts, and supporting crop water requirement management. Measurement methods such as scintillometry, lysimetry, and the eddy covariance (EC) flux method are presented. Additionally, hydrological models are discussed as estimation approaches for actual and potential ET. The paper explores various ET estimation products, particularly those based on remote sensing techniques. Specifically, methods like Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC), Simplified Surface Energy Balance Operational (SSEBop ET), Moderate Resolution Imaging Spectroradiometer (MOD16), Surface Energy Balance Algorithm for Land (SEBAL), Global Land Surface Evaporation: Amsterdam Methodology (GLEAM), Satellite Application Facility on Land Surface Analysis (LSA-SAF), and Global Land Data Assimilation System (GLDAS) are described. The integration of machine learning (ML) with EC and remote sensing is investigated, with a comprehensive discussion of different ML approaches. Validation methods including the EC method, water balance method-derived ET (WBET), and statistical techniques are explained. Overall, this review paper provides a comprehensive overview of ET quantification, covering measurement techniques, estimation approaches, remote sensing methods, and the integration of ML. The insights gained from this review contribute to a profound knowledge of ET dynamics and helps those sectors dealing with drought monitoring, water resource management and climate change assessments.</p>\",\"PeriodicalId\":35327,\"journal\":{\"name\":\"Environmental Quality Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Quality Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/tqem.22250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Quality Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tqem.22250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
在本综述研究中,简要讨论了测量和估算蒸散量(ET)的主要可用方法,同时解释了最新进展。此外,还回顾并解释了现有的最佳验证方法。报告强调了准确量化蒸散发在水资源管理、评估气候变化影响和支持作物需水管理方面的重要性。介绍了闪烁测量法、溶解测量法和涡度协方差(EC)通量法等测量方法。此外,还讨论了作为实际和潜在蒸散发估算方法的水文模型。本文探讨了各种蒸散发估算产品,特别是那些基于遥感技术的产品。特别是高分辨率蒸散发绘图与内部化校准(METRIC)、简化地表能量平衡运行(SSEBop ET)、中分辨率成像分光仪(MOD16)、陆地地表能量平衡算法(SEBAL)、全球陆地表面蒸发等方法:介绍了阿姆斯特丹方法学(GLEAM)、陆地表面分析卫星应用设施(LSA-SAF)和全球陆地数据同化系统(GLDAS)。研究了机器学习(ML)与欧洲共同体和遥感的整合,并全面讨论了不同的 ML 方法。论文还解释了验证方法,包括生态学方法、水平衡方法得出的蒸散发(WBET)和统计技术。总之,这篇综述论文全面概述了蒸散发量化问题,涵盖了测量技术、估算方法、遥感方法以及 ML 的整合。从这篇综述中获得的见解有助于加深对蒸散发动态的了解,并有助于处理干旱监测、水资源管理和气候变化评估的部门。
A review on models, products and techniques for evapotranspiration measurement, estimation, and validation
In this review study, the major available methods for measurement and estimation of evapotranspiration (ET) are discussed briefly while explaining the latest developments. The best available validation methods are also reviewed and explained. It highlights the importance of accurate ET quantification in managing water resources, evaluating climate change impacts, and supporting crop water requirement management. Measurement methods such as scintillometry, lysimetry, and the eddy covariance (EC) flux method are presented. Additionally, hydrological models are discussed as estimation approaches for actual and potential ET. The paper explores various ET estimation products, particularly those based on remote sensing techniques. Specifically, methods like Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC), Simplified Surface Energy Balance Operational (SSEBop ET), Moderate Resolution Imaging Spectroradiometer (MOD16), Surface Energy Balance Algorithm for Land (SEBAL), Global Land Surface Evaporation: Amsterdam Methodology (GLEAM), Satellite Application Facility on Land Surface Analysis (LSA-SAF), and Global Land Data Assimilation System (GLDAS) are described. The integration of machine learning (ML) with EC and remote sensing is investigated, with a comprehensive discussion of different ML approaches. Validation methods including the EC method, water balance method-derived ET (WBET), and statistical techniques are explained. Overall, this review paper provides a comprehensive overview of ET quantification, covering measurement techniques, estimation approaches, remote sensing methods, and the integration of ML. The insights gained from this review contribute to a profound knowledge of ET dynamics and helps those sectors dealing with drought monitoring, water resource management and climate change assessments.
期刊介绍:
Four times a year, this practical journal shows you how to improve environmental performance and exceed voluntary standards such as ISO 14000. In each issue, you"ll find in-depth articles and the most current case studies of successful environmental quality improvement efforts -- and guidance on how you can apply these goals to your organization. Written by leading industry experts and practitioners, Environmental Quality Management brings you innovative practices in Performance Measurement...Life-Cycle Assessments...Safety Management... Environmental Auditing...ISO 14000 Standards and Certification..."Green Accounting"...Environmental Communication...Sustainable Development Issues...Environmental Benchmarking...Global Environmental Law and Regulation.