岩土工程应用中使用有机共聚物化学加固砂土的机械强度研究

M. Krishnan, Edreese Housni Alsharaeh
{"title":"岩土工程应用中使用有机共聚物化学加固砂土的机械强度研究","authors":"M. Krishnan, Edreese Housni Alsharaeh","doi":"10.24294/jpse.v7i1.5170","DOIUrl":null,"url":null,"abstract":"The chemical reinforcement of sandy soils is usually carried out to improve their properties and meet specific engineering requirements. Nevertheless, conventional reinforcement agents are often expensive; the process is energy-intensive and causes serious environmental issues. Therefore, developing a cost-effective, room-temperature-based method that uses recyclable chemicals is necessary. In the current study, poly (styrene-co-methyl methacrylate) (PS-PMMA) is used as a stabilizer to reinforce sandy soil. The copolymer-reinforced sand samples were prepared using the one-step bulk polymerization method at room temperature. The mechanical strength of the copolymer-reinforced sand samples depends on the ratio of the PS-PMMA copolymer to sand. The higher the copolymer-to-sand ratio, the higher the sample’s compressive strength. Sand (70 wt.%)-PS-PMMA (30 wt.%) sample exhibited the highest compressive strength of 1900 psi. The copolymer matrix enwraps the sand particles to form a stable structure with high compressive strengths.","PeriodicalId":503084,"journal":{"name":"Journal of Polymer Science and Engineering","volume":"14 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical strength investigation of chemically reinforced sandy soil using organic copolymers for geotechnical engineering applications\",\"authors\":\"M. Krishnan, Edreese Housni Alsharaeh\",\"doi\":\"10.24294/jpse.v7i1.5170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The chemical reinforcement of sandy soils is usually carried out to improve their properties and meet specific engineering requirements. Nevertheless, conventional reinforcement agents are often expensive; the process is energy-intensive and causes serious environmental issues. Therefore, developing a cost-effective, room-temperature-based method that uses recyclable chemicals is necessary. In the current study, poly (styrene-co-methyl methacrylate) (PS-PMMA) is used as a stabilizer to reinforce sandy soil. The copolymer-reinforced sand samples were prepared using the one-step bulk polymerization method at room temperature. The mechanical strength of the copolymer-reinforced sand samples depends on the ratio of the PS-PMMA copolymer to sand. The higher the copolymer-to-sand ratio, the higher the sample’s compressive strength. Sand (70 wt.%)-PS-PMMA (30 wt.%) sample exhibited the highest compressive strength of 1900 psi. The copolymer matrix enwraps the sand particles to form a stable structure with high compressive strengths.\",\"PeriodicalId\":503084,\"journal\":{\"name\":\"Journal of Polymer Science and Engineering\",\"volume\":\"14 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24294/jpse.v7i1.5170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24294/jpse.v7i1.5170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对砂土进行化学加固通常是为了改善其性能,满足特定的工程要求。然而,传统的加固剂通常价格昂贵,加固过程耗费能源,而且会造成严重的环境问题。因此,有必要开发一种成本效益高、基于室温且使用可回收化学品的方法。在目前的研究中,聚(苯乙烯-甲基丙烯酸甲酯)(PS-PMMA)被用作加固砂土的稳定剂。共聚物加固砂土样品是在室温下采用一步法批量聚合制备的。共聚物加固砂土样品的机械强度取决于 PS-PMMA 共聚物与砂土的比例。共聚物与砂的比例越高,样品的抗压强度就越高。砂(70 wt.%)-PS-PMMA(30 wt.%)样品的抗压强度最高,达到 1900 psi。共聚物基质将砂粒包裹起来,形成了具有高抗压强度的稳定结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical strength investigation of chemically reinforced sandy soil using organic copolymers for geotechnical engineering applications
The chemical reinforcement of sandy soils is usually carried out to improve their properties and meet specific engineering requirements. Nevertheless, conventional reinforcement agents are often expensive; the process is energy-intensive and causes serious environmental issues. Therefore, developing a cost-effective, room-temperature-based method that uses recyclable chemicals is necessary. In the current study, poly (styrene-co-methyl methacrylate) (PS-PMMA) is used as a stabilizer to reinforce sandy soil. The copolymer-reinforced sand samples were prepared using the one-step bulk polymerization method at room temperature. The mechanical strength of the copolymer-reinforced sand samples depends on the ratio of the PS-PMMA copolymer to sand. The higher the copolymer-to-sand ratio, the higher the sample’s compressive strength. Sand (70 wt.%)-PS-PMMA (30 wt.%) sample exhibited the highest compressive strength of 1900 psi. The copolymer matrix enwraps the sand particles to form a stable structure with high compressive strengths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信