{"title":"受周期性来流扰动的低压涡轮级联中的端壁流动特性分析,第 2 部分:使用压敏涂料进行非稳态叶片表面测量","authors":"Tobias Schubert, D. Kožulović, Martin Bitter","doi":"10.3390/aerospace11050404","DOIUrl":null,"url":null,"abstract":"Unsteady pressure-sensitive paint (i-PSP) measurements were performed at a sampling rate of 30 kHz to investigate the near-endwall blade suction surface flow inside a low-pressure turbine cascade operating at engine-relevant high-speed and low-Re conditions. The investigation focuses on the interaction of periodically incoming bar wakes at 500 Hz with the secondary flow and the blade suction surface. The results build on extensive PIV measurements presented in the first part of this two-part publication, which captured the ’negative-jet-effect’ of the wakes throughout the blade passage. The surface pressure distributions are combined with CFD to analyze the flow topology, such as the passage vortex separation line. By analyzing data from phase-locked PIV and PSP measurements, a wake-induced moving pressure gradient negative in space and positive in time is found, which is intensified in the secondary flow region by 33% with respect to midspan. Furthermore, two methods of frequency-filtering based on FFT and SPOD are compared and utilized to associate a pressure fluctuation peak around 678 Hz with separation bubble oscillation.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of the Endwall Flow in a Low-Pressure Turbine Cascade Perturbed by Periodically Incoming Wakes, Part 2: Unsteady Blade Surface Measurements Using Pressure-Sensitive Paint\",\"authors\":\"Tobias Schubert, D. Kožulović, Martin Bitter\",\"doi\":\"10.3390/aerospace11050404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsteady pressure-sensitive paint (i-PSP) measurements were performed at a sampling rate of 30 kHz to investigate the near-endwall blade suction surface flow inside a low-pressure turbine cascade operating at engine-relevant high-speed and low-Re conditions. The investigation focuses on the interaction of periodically incoming bar wakes at 500 Hz with the secondary flow and the blade suction surface. The results build on extensive PIV measurements presented in the first part of this two-part publication, which captured the ’negative-jet-effect’ of the wakes throughout the blade passage. The surface pressure distributions are combined with CFD to analyze the flow topology, such as the passage vortex separation line. By analyzing data from phase-locked PIV and PSP measurements, a wake-induced moving pressure gradient negative in space and positive in time is found, which is intensified in the secondary flow region by 33% with respect to midspan. Furthermore, two methods of frequency-filtering based on FFT and SPOD are compared and utilized to associate a pressure fluctuation peak around 678 Hz with separation bubble oscillation.\",\"PeriodicalId\":48525,\"journal\":{\"name\":\"Aerospace\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace11050404\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11050404","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Characterization of the Endwall Flow in a Low-Pressure Turbine Cascade Perturbed by Periodically Incoming Wakes, Part 2: Unsteady Blade Surface Measurements Using Pressure-Sensitive Paint
Unsteady pressure-sensitive paint (i-PSP) measurements were performed at a sampling rate of 30 kHz to investigate the near-endwall blade suction surface flow inside a low-pressure turbine cascade operating at engine-relevant high-speed and low-Re conditions. The investigation focuses on the interaction of periodically incoming bar wakes at 500 Hz with the secondary flow and the blade suction surface. The results build on extensive PIV measurements presented in the first part of this two-part publication, which captured the ’negative-jet-effect’ of the wakes throughout the blade passage. The surface pressure distributions are combined with CFD to analyze the flow topology, such as the passage vortex separation line. By analyzing data from phase-locked PIV and PSP measurements, a wake-induced moving pressure gradient negative in space and positive in time is found, which is intensified in the secondary flow region by 33% with respect to midspan. Furthermore, two methods of frequency-filtering based on FFT and SPOD are compared and utilized to associate a pressure fluctuation peak around 678 Hz with separation bubble oscillation.
期刊介绍:
Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.