大豆吗啡分子的结构组织

N. Akhmedov, L. Agayeva, L. Ismailova
{"title":"大豆吗啡分子的结构组织","authors":"N. Akhmedov, L. Agayeva, L. Ismailova","doi":"10.29039/rusjbpc.2023.0586","DOIUrl":null,"url":null,"abstract":"The conformational capabilities of soymorphine-5 (Thr1-Pro2-Phe3-Val4-Val5-NH2), soymorphine-6 (Tyr1-Pro2-Phe3-Val4-Val5-Asn6-NH2) and soymorphine-7 (Tyr1- Pro2-Tyr3-Val4-Val5-Asn6-Ala7-NH2) molecules have been studied by the method of theoretical conformational analysis. The potential function of the system is chosen as the sum of non-valence, electrostatic and torsion interactions and the energy of hydrogen bonds. The low-energy conformations of soymorphine-5, soymorphine-6 and soymorphine-7 molecules were found, the dihedral angles of the main and side chains of amino acid residues that make up the molecule were found, and the energy of intra- and interresidual interactions was estimated. Thus, the spatial structure of soymorphine-5, soymorphine-6 and soymorphine-7 molecules can be represented by eight structural types. It can be assumed that the molecules perform their physiological functions in these structures. Comparison of the low-energy structures of soymorphins shows that in all molecules the first four low-energy conformations are representatives of the structural types efef, efee, efff, effe for soymorphine-5, effff, efeff, efffe, effee for soymorphine-6, efffff, efeffe, efffef, effeee for soymorphine-6. soymorphine-7. On the basis of these structures, it is possible to propose their artificial analogues for synthesis. It was shown that the spatial structure of soymorphine-5, soymorphine-6 and soymorphine-7 molecules is represented by the conformations of eight shapes of the peptide skeleton. The results obtained can be used to elucidate the structural and structural-functional organization of soymorphine molecules.","PeriodicalId":169374,"journal":{"name":"Russian Journal of Biological Physics and Chemisrty","volume":"8 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STRUCTURAL ORGANIZATION OF SOYMORPHIN MOLECULES\",\"authors\":\"N. Akhmedov, L. Agayeva, L. Ismailova\",\"doi\":\"10.29039/rusjbpc.2023.0586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conformational capabilities of soymorphine-5 (Thr1-Pro2-Phe3-Val4-Val5-NH2), soymorphine-6 (Tyr1-Pro2-Phe3-Val4-Val5-Asn6-NH2) and soymorphine-7 (Tyr1- Pro2-Tyr3-Val4-Val5-Asn6-Ala7-NH2) molecules have been studied by the method of theoretical conformational analysis. The potential function of the system is chosen as the sum of non-valence, electrostatic and torsion interactions and the energy of hydrogen bonds. The low-energy conformations of soymorphine-5, soymorphine-6 and soymorphine-7 molecules were found, the dihedral angles of the main and side chains of amino acid residues that make up the molecule were found, and the energy of intra- and interresidual interactions was estimated. Thus, the spatial structure of soymorphine-5, soymorphine-6 and soymorphine-7 molecules can be represented by eight structural types. It can be assumed that the molecules perform their physiological functions in these structures. Comparison of the low-energy structures of soymorphins shows that in all molecules the first four low-energy conformations are representatives of the structural types efef, efee, efff, effe for soymorphine-5, effff, efeff, efffe, effee for soymorphine-6, efffff, efeffe, efffef, effeee for soymorphine-6. soymorphine-7. On the basis of these structures, it is possible to propose their artificial analogues for synthesis. It was shown that the spatial structure of soymorphine-5, soymorphine-6 and soymorphine-7 molecules is represented by the conformations of eight shapes of the peptide skeleton. The results obtained can be used to elucidate the structural and structural-functional organization of soymorphine molecules.\",\"PeriodicalId\":169374,\"journal\":{\"name\":\"Russian Journal of Biological Physics and Chemisrty\",\"volume\":\"8 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Biological Physics and Chemisrty\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29039/rusjbpc.2023.0586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Biological Physics and Chemisrty","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29039/rusjbpc.2023.0586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过理论构象分析方法,研究了大豆吗啡-5(Thr1-Pro2-Phe3-Val4-Val5-NH2)、大豆吗啡-6(Tyr1-Pro2-Phe3-Val4-Val5-Asn6-NH2)和大豆吗啡-7(Tyr1- Pro2-Tyr3-Val4-Val5-Asn6-Ala7-NH2)分子的构象能力。系统的势函数被选择为非价、静电和扭转相互作用以及氢键能量的总和。结果发现了大豆吗啡-5、大豆吗啡-6 和大豆吗啡-7 分子的低能构象,找到了组成分子的氨基酸残基主链和侧链的二面角,并估算了残基内和残基间相互作用的能量。因此,豆吗啡-5、豆吗啡-6 和豆吗啡-7 分子的空间结构可以用八种结构类型来表示。可以推测,这些分子在这些结构中发挥其生理功能。对豆蔻吗啡的低能结构进行比较后发现,豆蔻吗啡-5 的前四种低能构象是结构类型 efef、efee、efff、effe 的代表,豆蔻吗啡-6 的前四种低能构象是结构类型 effff、efeff、efffe、effee 的代表,豆蔻吗啡-6 和豆蔻吗啡-7 的前四种低能构象是结构类型 efffff、efeffe、efffef、effeee 的代表。根据这些结构,可以提出人工合成的类似物。研究结果表明,山豆根碱-5、山豆根碱-6 和山豆根碱-7 分子的空间结构由肽骨架的八种形状的构象来表示。所获得的结果可用于阐明黄豆吗啡分子的结构和结构功能组织。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STRUCTURAL ORGANIZATION OF SOYMORPHIN MOLECULES
The conformational capabilities of soymorphine-5 (Thr1-Pro2-Phe3-Val4-Val5-NH2), soymorphine-6 (Tyr1-Pro2-Phe3-Val4-Val5-Asn6-NH2) and soymorphine-7 (Tyr1- Pro2-Tyr3-Val4-Val5-Asn6-Ala7-NH2) molecules have been studied by the method of theoretical conformational analysis. The potential function of the system is chosen as the sum of non-valence, electrostatic and torsion interactions and the energy of hydrogen bonds. The low-energy conformations of soymorphine-5, soymorphine-6 and soymorphine-7 molecules were found, the dihedral angles of the main and side chains of amino acid residues that make up the molecule were found, and the energy of intra- and interresidual interactions was estimated. Thus, the spatial structure of soymorphine-5, soymorphine-6 and soymorphine-7 molecules can be represented by eight structural types. It can be assumed that the molecules perform their physiological functions in these structures. Comparison of the low-energy structures of soymorphins shows that in all molecules the first four low-energy conformations are representatives of the structural types efef, efee, efff, effe for soymorphine-5, effff, efeff, efffe, effee for soymorphine-6, efffff, efeffe, efffef, effeee for soymorphine-6. soymorphine-7. On the basis of these structures, it is possible to propose their artificial analogues for synthesis. It was shown that the spatial structure of soymorphine-5, soymorphine-6 and soymorphine-7 molecules is represented by the conformations of eight shapes of the peptide skeleton. The results obtained can be used to elucidate the structural and structural-functional organization of soymorphine molecules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信