E. Chielle, O. Mazonka, Homer Gamil, Michail Maniatakos
{"title":"将位运算和模块运算结合起来,实现高效的通用全同态加密","authors":"E. Chielle, O. Mazonka, Homer Gamil, Michail Maniatakos","doi":"10.1145/3665280","DOIUrl":null,"url":null,"abstract":"Fully Homomorphic Encryption (FHE) enables computation directly on encrypted data. This property is desirable for outsourced computation of sensitive data as it relies solely on the underlying security of the cryptosystem and not in access control policies. Even though FHE is still significantly slower than unencrypted computation, practical times are possible for applications easily representable as low-order polynomials, since most FHE schemes support modular addition and multiplication over ciphertexts. If, however, an application cannot be expressed with low-order polynomials, then Boolean logic must be emulated. This bit-level arithmetic enables any computation to be performed homomorphically. Nevertheless, as it runs on top of the natively supported modular arithmetic, it has poor performance, which hinders its use in the majority of scenarios. In this work, we propose Bridging, a technique that allows conversion from bit-level to modular arithmetic and vice-versa. This enables the use of the comprehensive computation provided by bit-level arithmetic and the performance of modular arithmetic within the same application. Experimental results show that Bridging can lead to 1-2 orders of magnitude performance improvement for tested benchmarks and two real-world applications: URL denylisting and genotype imputation. Bridging performance comes from two factors: reduced number of operations and smaller multiplicative depth.","PeriodicalId":50914,"journal":{"name":"ACM Transactions on Embedded Computing Systems","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupling bit and modular arithmetic for efficient general-purpose fully homomorphic encryption\",\"authors\":\"E. Chielle, O. Mazonka, Homer Gamil, Michail Maniatakos\",\"doi\":\"10.1145/3665280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fully Homomorphic Encryption (FHE) enables computation directly on encrypted data. This property is desirable for outsourced computation of sensitive data as it relies solely on the underlying security of the cryptosystem and not in access control policies. Even though FHE is still significantly slower than unencrypted computation, practical times are possible for applications easily representable as low-order polynomials, since most FHE schemes support modular addition and multiplication over ciphertexts. If, however, an application cannot be expressed with low-order polynomials, then Boolean logic must be emulated. This bit-level arithmetic enables any computation to be performed homomorphically. Nevertheless, as it runs on top of the natively supported modular arithmetic, it has poor performance, which hinders its use in the majority of scenarios. In this work, we propose Bridging, a technique that allows conversion from bit-level to modular arithmetic and vice-versa. This enables the use of the comprehensive computation provided by bit-level arithmetic and the performance of modular arithmetic within the same application. Experimental results show that Bridging can lead to 1-2 orders of magnitude performance improvement for tested benchmarks and two real-world applications: URL denylisting and genotype imputation. Bridging performance comes from two factors: reduced number of operations and smaller multiplicative depth.\",\"PeriodicalId\":50914,\"journal\":{\"name\":\"ACM Transactions on Embedded Computing Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Embedded Computing Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3665280\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Embedded Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3665280","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Coupling bit and modular arithmetic for efficient general-purpose fully homomorphic encryption
Fully Homomorphic Encryption (FHE) enables computation directly on encrypted data. This property is desirable for outsourced computation of sensitive data as it relies solely on the underlying security of the cryptosystem and not in access control policies. Even though FHE is still significantly slower than unencrypted computation, practical times are possible for applications easily representable as low-order polynomials, since most FHE schemes support modular addition and multiplication over ciphertexts. If, however, an application cannot be expressed with low-order polynomials, then Boolean logic must be emulated. This bit-level arithmetic enables any computation to be performed homomorphically. Nevertheless, as it runs on top of the natively supported modular arithmetic, it has poor performance, which hinders its use in the majority of scenarios. In this work, we propose Bridging, a technique that allows conversion from bit-level to modular arithmetic and vice-versa. This enables the use of the comprehensive computation provided by bit-level arithmetic and the performance of modular arithmetic within the same application. Experimental results show that Bridging can lead to 1-2 orders of magnitude performance improvement for tested benchmarks and two real-world applications: URL denylisting and genotype imputation. Bridging performance comes from two factors: reduced number of operations and smaller multiplicative depth.
期刊介绍:
The design of embedded computing systems, both the software and hardware, increasingly relies on sophisticated algorithms, analytical models, and methodologies. ACM Transactions on Embedded Computing Systems (TECS) aims to present the leading work relating to the analysis, design, behavior, and experience with embedded computing systems.