考虑随机载荷历史的涡轮机盘概率 LCF 寿命预测框架

IF 2.2 3区 工程技术 Q3 ENGINEERING, INDUSTRIAL
Song Bai, Ying Zeng, Tudi Huang, Yan‐Feng Li, Hong‐Zhong Huang
{"title":"考虑随机载荷历史的涡轮机盘概率 LCF 寿命预测框架","authors":"Song Bai, Ying Zeng, Tudi Huang, Yan‐Feng Li, Hong‐Zhong Huang","doi":"10.1002/qre.3582","DOIUrl":null,"url":null,"abstract":"The load history exerts a considerable impact on the low cycle fatigue (LCF) life of turbine discs. Thus, oversimplifying the load history leads to substantial errors in fatigue life prediction. This study introduces a probabilistic fatigue life prediction method for turbine discs, accounting for the randomness inherent in LCF load history. The method involves quantifying the randomness of load history through numerical simulation and employing a surrogate model enhanced with learning functions to balance computational efficiency and accuracy. The probabilistic LCF life prediction of full‐scale turbine disc was conducted, demonstrating that the fatigue life scatter predicted by the proposed method more closely aligns with experimental data compared to the original approach. By refining the numerical simulation process, the proposed method better accounts for uncertainties in load history while maintaining computational efficiency, offering significant insights for the fatigue reliability design of turbine discs.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic LCF life prediction framework for turbine discs considering random load history\",\"authors\":\"Song Bai, Ying Zeng, Tudi Huang, Yan‐Feng Li, Hong‐Zhong Huang\",\"doi\":\"10.1002/qre.3582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The load history exerts a considerable impact on the low cycle fatigue (LCF) life of turbine discs. Thus, oversimplifying the load history leads to substantial errors in fatigue life prediction. This study introduces a probabilistic fatigue life prediction method for turbine discs, accounting for the randomness inherent in LCF load history. The method involves quantifying the randomness of load history through numerical simulation and employing a surrogate model enhanced with learning functions to balance computational efficiency and accuracy. The probabilistic LCF life prediction of full‐scale turbine disc was conducted, demonstrating that the fatigue life scatter predicted by the proposed method more closely aligns with experimental data compared to the original approach. By refining the numerical simulation process, the proposed method better accounts for uncertainties in load history while maintaining computational efficiency, offering significant insights for the fatigue reliability design of turbine discs.\",\"PeriodicalId\":56088,\"journal\":{\"name\":\"Quality and Reliability Engineering International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality and Reliability Engineering International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/qre.3582\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3582","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

载荷历史对涡轮盘的低循环疲劳(LCF)寿命有相当大的影响。因此,过度简化载荷历史会导致疲劳寿命预测出现重大误差。本研究引入了一种涡轮机盘概率疲劳寿命预测方法,考虑了 LCF 载荷历史固有的随机性。该方法包括通过数值模拟量化载荷历史的随机性,并采用一个具有学习功能的替代模型来平衡计算效率和精度。对全尺寸涡轮机盘进行了 LCF 概率寿命预测,结果表明,与原始方法相比,拟议方法预测的疲劳寿命散点与实验数据更为接近。通过改进数值模拟过程,所提出的方法在保持计算效率的同时,更好地考虑了载荷历史的不确定性,为涡轮盘的疲劳可靠性设计提供了重要启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic LCF life prediction framework for turbine discs considering random load history
The load history exerts a considerable impact on the low cycle fatigue (LCF) life of turbine discs. Thus, oversimplifying the load history leads to substantial errors in fatigue life prediction. This study introduces a probabilistic fatigue life prediction method for turbine discs, accounting for the randomness inherent in LCF load history. The method involves quantifying the randomness of load history through numerical simulation and employing a surrogate model enhanced with learning functions to balance computational efficiency and accuracy. The probabilistic LCF life prediction of full‐scale turbine disc was conducted, demonstrating that the fatigue life scatter predicted by the proposed method more closely aligns with experimental data compared to the original approach. By refining the numerical simulation process, the proposed method better accounts for uncertainties in load history while maintaining computational efficiency, offering significant insights for the fatigue reliability design of turbine discs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
21.70%
发文量
181
审稿时长
6 months
期刊介绍: Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering. Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies. The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal. Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry. Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信