Song Bai, Ying Zeng, Tudi Huang, Yan‐Feng Li, Hong‐Zhong Huang
{"title":"考虑随机载荷历史的涡轮机盘概率 LCF 寿命预测框架","authors":"Song Bai, Ying Zeng, Tudi Huang, Yan‐Feng Li, Hong‐Zhong Huang","doi":"10.1002/qre.3582","DOIUrl":null,"url":null,"abstract":"The load history exerts a considerable impact on the low cycle fatigue (LCF) life of turbine discs. Thus, oversimplifying the load history leads to substantial errors in fatigue life prediction. This study introduces a probabilistic fatigue life prediction method for turbine discs, accounting for the randomness inherent in LCF load history. The method involves quantifying the randomness of load history through numerical simulation and employing a surrogate model enhanced with learning functions to balance computational efficiency and accuracy. The probabilistic LCF life prediction of full‐scale turbine disc was conducted, demonstrating that the fatigue life scatter predicted by the proposed method more closely aligns with experimental data compared to the original approach. By refining the numerical simulation process, the proposed method better accounts for uncertainties in load history while maintaining computational efficiency, offering significant insights for the fatigue reliability design of turbine discs.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic LCF life prediction framework for turbine discs considering random load history\",\"authors\":\"Song Bai, Ying Zeng, Tudi Huang, Yan‐Feng Li, Hong‐Zhong Huang\",\"doi\":\"10.1002/qre.3582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The load history exerts a considerable impact on the low cycle fatigue (LCF) life of turbine discs. Thus, oversimplifying the load history leads to substantial errors in fatigue life prediction. This study introduces a probabilistic fatigue life prediction method for turbine discs, accounting for the randomness inherent in LCF load history. The method involves quantifying the randomness of load history through numerical simulation and employing a surrogate model enhanced with learning functions to balance computational efficiency and accuracy. The probabilistic LCF life prediction of full‐scale turbine disc was conducted, demonstrating that the fatigue life scatter predicted by the proposed method more closely aligns with experimental data compared to the original approach. By refining the numerical simulation process, the proposed method better accounts for uncertainties in load history while maintaining computational efficiency, offering significant insights for the fatigue reliability design of turbine discs.\",\"PeriodicalId\":56088,\"journal\":{\"name\":\"Quality and Reliability Engineering International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality and Reliability Engineering International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/qre.3582\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3582","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Probabilistic LCF life prediction framework for turbine discs considering random load history
The load history exerts a considerable impact on the low cycle fatigue (LCF) life of turbine discs. Thus, oversimplifying the load history leads to substantial errors in fatigue life prediction. This study introduces a probabilistic fatigue life prediction method for turbine discs, accounting for the randomness inherent in LCF load history. The method involves quantifying the randomness of load history through numerical simulation and employing a surrogate model enhanced with learning functions to balance computational efficiency and accuracy. The probabilistic LCF life prediction of full‐scale turbine disc was conducted, demonstrating that the fatigue life scatter predicted by the proposed method more closely aligns with experimental data compared to the original approach. By refining the numerical simulation process, the proposed method better accounts for uncertainties in load history while maintaining computational efficiency, offering significant insights for the fatigue reliability design of turbine discs.
期刊介绍:
Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering.
Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies.
The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal.
Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry.
Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.