关于改进航空图像中 YOLOv5 车辆目标检测算法的研究

Drones Pub Date : 2024-05-16 DOI:10.3390/drones8050202
Xue Yang, Jihong Xiu, Xiaojia Liu
{"title":"关于改进航空图像中 YOLOv5 车辆目标检测算法的研究","authors":"Xue Yang, Jihong Xiu, Xiaojia Liu","doi":"10.3390/drones8050202","DOIUrl":null,"url":null,"abstract":"Aerial photoelectric imaging payloads have become an important means of reconnaissance and surveillance in recent years. However, aerial images are easily affected by external conditions and have unclear edges, which greatly reduces the accuracy of imaging target recognition. This paper proposes the M-YOLOv5 model, which uses a shallow feature layer. The RFBs module is introduced to improve the receptive field and detection effect of small targets. In the neck network part, the BiFPN structure is used to reuse the underlying features to integrate more features, and a CBAM attention mechanism is added to improve detection accuracy. The experimental results show that the detection effect of this method on the DroneVehicle dataset is better than that of the original network, with the precision rate increased by 2.8%, the recall rate increased by 16%, and the average precision increased by 2.3%. Considering the real-time problem of target detection, based on the improved model, the Clight-YOLOv5 model is proposed, by lightweighting the network structure and using the depth-separable convolution optimization module. After lightweighting, the number of model parameters is decreased by 71.3%, which provides a new idea for lightweight target detection and proves the model’s effectiveness in aviation scenarios.","PeriodicalId":507567,"journal":{"name":"Drones","volume":"84 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Improved YOLOv5 Vehicle Target Detection Algorithm in Aerial Images\",\"authors\":\"Xue Yang, Jihong Xiu, Xiaojia Liu\",\"doi\":\"10.3390/drones8050202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aerial photoelectric imaging payloads have become an important means of reconnaissance and surveillance in recent years. However, aerial images are easily affected by external conditions and have unclear edges, which greatly reduces the accuracy of imaging target recognition. This paper proposes the M-YOLOv5 model, which uses a shallow feature layer. The RFBs module is introduced to improve the receptive field and detection effect of small targets. In the neck network part, the BiFPN structure is used to reuse the underlying features to integrate more features, and a CBAM attention mechanism is added to improve detection accuracy. The experimental results show that the detection effect of this method on the DroneVehicle dataset is better than that of the original network, with the precision rate increased by 2.8%, the recall rate increased by 16%, and the average precision increased by 2.3%. Considering the real-time problem of target detection, based on the improved model, the Clight-YOLOv5 model is proposed, by lightweighting the network structure and using the depth-separable convolution optimization module. After lightweighting, the number of model parameters is decreased by 71.3%, which provides a new idea for lightweight target detection and proves the model’s effectiveness in aviation scenarios.\",\"PeriodicalId\":507567,\"journal\":{\"name\":\"Drones\",\"volume\":\"84 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drones\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/drones8050202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/drones8050202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,航空光电成像有效载荷已成为侦察和监视的重要手段。然而,航空图像易受外界条件影响,边缘不清晰,大大降低了成像目标识别的准确性。本文提出了 M-YOLOv5 模型,该模型采用浅层特征层。引入 RFBs 模块,提高小目标的感受野和检测效果。在颈部网络部分,采用 BiFPN 结构重用底层特征以整合更多特征,并加入 CBAM 注意机制以提高检测精度。实验结果表明,该方法在 DroneVehicle 数据集上的检测效果优于原始网络,精度提高了 2.8%,召回率提高了 16%,平均精度提高了 2.3%。考虑到目标检测的实时性问题,在改进模型的基础上,通过轻量化网络结构和使用深度可分卷积优化模块,提出了 Clight-YOLOv5 模型。轻量化后,模型参数数减少了 71.3%,为轻量化目标检测提供了新思路,证明了模型在航空场景中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Improved YOLOv5 Vehicle Target Detection Algorithm in Aerial Images
Aerial photoelectric imaging payloads have become an important means of reconnaissance and surveillance in recent years. However, aerial images are easily affected by external conditions and have unclear edges, which greatly reduces the accuracy of imaging target recognition. This paper proposes the M-YOLOv5 model, which uses a shallow feature layer. The RFBs module is introduced to improve the receptive field and detection effect of small targets. In the neck network part, the BiFPN structure is used to reuse the underlying features to integrate more features, and a CBAM attention mechanism is added to improve detection accuracy. The experimental results show that the detection effect of this method on the DroneVehicle dataset is better than that of the original network, with the precision rate increased by 2.8%, the recall rate increased by 16%, and the average precision increased by 2.3%. Considering the real-time problem of target detection, based on the improved model, the Clight-YOLOv5 model is proposed, by lightweighting the network structure and using the depth-separable convolution optimization module. After lightweighting, the number of model parameters is decreased by 71.3%, which provides a new idea for lightweight target detection and proves the model’s effectiveness in aviation scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信