{"title":"世界海洋浮游动物的胶状与贮存生物量之比","authors":"Sergey Piontkovskiy, I. Minsky, Ya. V. Meger","doi":"10.29039/rusjbpc.2023.0595","DOIUrl":null,"url":null,"abstract":"The spatiotemporal variability of ocean profound biophysical characteristics (i.e. the intensity of bioluminescence, soun scattering layers and etc.) gradually depends on the zooplankton biomass distribution pattern. In turn, the forage zooplankton fraction (which is represented basically by crustaceans contributing to a small pelagic fish diet) and the gelatinous zooplankton fraction (which is characterized by jellyfish, ctenophores, and some other organisms), both play important but different roles in matter and energy transfer in the pelagic World Ocean. Forage zooplankton is the transformer that links producers to high trophic-level consumers. The gelatinous zooplankton channels the organic carbon towards a detrital pathway. The ratio of forage-to-gelatinous zooplankton biomass inferred out of international databases (JeDI and COPEPOD) and published papers (with data averaged for 1951-2014), was calculated. The dominance of gelatinous biomass (in carbon units) over the forage biomass in the upper 200 m layer across the World Ocean’s northern hemisphere was shown. This dominance can negatively impact fish stock recruitment.","PeriodicalId":169374,"journal":{"name":"Russian Journal of Biological Physics and Chemisrty","volume":"18 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE GELATINOUS-TO-FORAGE ZOOPLANKTON BIOMASS RATIO OF THE WORLD OCEAN\",\"authors\":\"Sergey Piontkovskiy, I. Minsky, Ya. V. Meger\",\"doi\":\"10.29039/rusjbpc.2023.0595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spatiotemporal variability of ocean profound biophysical characteristics (i.e. the intensity of bioluminescence, soun scattering layers and etc.) gradually depends on the zooplankton biomass distribution pattern. In turn, the forage zooplankton fraction (which is represented basically by crustaceans contributing to a small pelagic fish diet) and the gelatinous zooplankton fraction (which is characterized by jellyfish, ctenophores, and some other organisms), both play important but different roles in matter and energy transfer in the pelagic World Ocean. Forage zooplankton is the transformer that links producers to high trophic-level consumers. The gelatinous zooplankton channels the organic carbon towards a detrital pathway. The ratio of forage-to-gelatinous zooplankton biomass inferred out of international databases (JeDI and COPEPOD) and published papers (with data averaged for 1951-2014), was calculated. The dominance of gelatinous biomass (in carbon units) over the forage biomass in the upper 200 m layer across the World Ocean’s northern hemisphere was shown. This dominance can negatively impact fish stock recruitment.\",\"PeriodicalId\":169374,\"journal\":{\"name\":\"Russian Journal of Biological Physics and Chemisrty\",\"volume\":\"18 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Biological Physics and Chemisrty\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29039/rusjbpc.2023.0595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Biological Physics and Chemisrty","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29039/rusjbpc.2023.0595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
THE GELATINOUS-TO-FORAGE ZOOPLANKTON BIOMASS RATIO OF THE WORLD OCEAN
The spatiotemporal variability of ocean profound biophysical characteristics (i.e. the intensity of bioluminescence, soun scattering layers and etc.) gradually depends on the zooplankton biomass distribution pattern. In turn, the forage zooplankton fraction (which is represented basically by crustaceans contributing to a small pelagic fish diet) and the gelatinous zooplankton fraction (which is characterized by jellyfish, ctenophores, and some other organisms), both play important but different roles in matter and energy transfer in the pelagic World Ocean. Forage zooplankton is the transformer that links producers to high trophic-level consumers. The gelatinous zooplankton channels the organic carbon towards a detrital pathway. The ratio of forage-to-gelatinous zooplankton biomass inferred out of international databases (JeDI and COPEPOD) and published papers (with data averaged for 1951-2014), was calculated. The dominance of gelatinous biomass (in carbon units) over the forage biomass in the upper 200 m layer across the World Ocean’s northern hemisphere was shown. This dominance can negatively impact fish stock recruitment.