{"title":"通过艾森哈特提升和线性化求解非线性二阶 ODEs","authors":"A. Paliathanasis","doi":"10.3390/axioms13050331","DOIUrl":null,"url":null,"abstract":"The linearization of nonlinear differential equations represents a robust approach to solution derivation, typically achieved through Lie symmetry analysis. This study adopts a geometric methodology grounded in the Eisenhart lift, revealing transformative techniques that linearize a set of second-order ordinary differential equations. The research underscores the effectiveness of this geometric approach in the linearization of a class of Newtonian systems that cannot be linearized through symmetry analysis.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":"118 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving Nonlinear Second-Order ODEs via the Eisenhart Lift and Linearization\",\"authors\":\"A. Paliathanasis\",\"doi\":\"10.3390/axioms13050331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The linearization of nonlinear differential equations represents a robust approach to solution derivation, typically achieved through Lie symmetry analysis. This study adopts a geometric methodology grounded in the Eisenhart lift, revealing transformative techniques that linearize a set of second-order ordinary differential equations. The research underscores the effectiveness of this geometric approach in the linearization of a class of Newtonian systems that cannot be linearized through symmetry analysis.\",\"PeriodicalId\":502355,\"journal\":{\"name\":\"Axioms\",\"volume\":\"118 16\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13050331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13050331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solving Nonlinear Second-Order ODEs via the Eisenhart Lift and Linearization
The linearization of nonlinear differential equations represents a robust approach to solution derivation, typically achieved through Lie symmetry analysis. This study adopts a geometric methodology grounded in the Eisenhart lift, revealing transformative techniques that linearize a set of second-order ordinary differential equations. The research underscores the effectiveness of this geometric approach in the linearization of a class of Newtonian systems that cannot be linearized through symmetry analysis.