深度学习揭示光动力疗法对癌细胞的动态影响

Md. Rahman, Feihong Yan, Ruiyuan Li, Yu Wang, Lu Huang, Rongcheng Han, Yuqiang Jiang
{"title":"深度学习揭示光动力疗法对癌细胞的动态影响","authors":"Md. Rahman, Feihong Yan, Ruiyuan Li, Yu Wang, Lu Huang, Rongcheng Han, Yuqiang Jiang","doi":"10.3390/pharmaceutics16050673","DOIUrl":null,"url":null,"abstract":"Photodynamic therapy (PDT) shows promise in tumor treatment, particularly when combined with nanotechnology. This study examines the impact of deep learning, particularly the Cellpose algorithm, on the comprehension of cancer cell responses to PDT. The Cellpose algorithm enables robust morphological analysis of cancer cells, while logistic growth modelling predicts cellular behavior post-PDT. Rigorous model validation ensures the accuracy of the findings. Cellpose demonstrates significant morphological changes after PDT, affecting cellular proliferation and survival. The reliability of the findings is confirmed by model validation. This deep learning tool enhances our understanding of cancer cell dynamics after PDT. Advanced analytical techniques, such as morphological analysis and growth modeling, provide insights into the effects of PDT on hepatocellular carcinoma (HCC) cells, which could potentially improve cancer treatment efficacy. In summary, the research examines the role of deep learning in optimizing PDT parameters to personalize oncology treatment and improve efficacy.","PeriodicalId":508088,"journal":{"name":"Pharmaceutics","volume":"4 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Insights into the Dynamic Effects of Photodynamic Therapy on Cancer Cells\",\"authors\":\"Md. Rahman, Feihong Yan, Ruiyuan Li, Yu Wang, Lu Huang, Rongcheng Han, Yuqiang Jiang\",\"doi\":\"10.3390/pharmaceutics16050673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photodynamic therapy (PDT) shows promise in tumor treatment, particularly when combined with nanotechnology. This study examines the impact of deep learning, particularly the Cellpose algorithm, on the comprehension of cancer cell responses to PDT. The Cellpose algorithm enables robust morphological analysis of cancer cells, while logistic growth modelling predicts cellular behavior post-PDT. Rigorous model validation ensures the accuracy of the findings. Cellpose demonstrates significant morphological changes after PDT, affecting cellular proliferation and survival. The reliability of the findings is confirmed by model validation. This deep learning tool enhances our understanding of cancer cell dynamics after PDT. Advanced analytical techniques, such as morphological analysis and growth modeling, provide insights into the effects of PDT on hepatocellular carcinoma (HCC) cells, which could potentially improve cancer treatment efficacy. In summary, the research examines the role of deep learning in optimizing PDT parameters to personalize oncology treatment and improve efficacy.\",\"PeriodicalId\":508088,\"journal\":{\"name\":\"Pharmaceutics\",\"volume\":\"4 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/pharmaceutics16050673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/pharmaceutics16050673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光动力疗法(PDT)在肿瘤治疗中大有可为,尤其是在与纳米技术结合时。本研究探讨了深度学习(尤其是 Cellpose 算法)对理解癌细胞对光动力疗法反应的影响。Cellpose 算法能对癌细胞进行稳健的形态学分析,而逻辑生长模型则能预测 PDT 治疗后的细胞行为。严格的模型验证确保了研究结果的准确性。Cellpose 显示,PDT 后细胞形态发生了显著变化,影响了细胞的增殖和存活。模型验证证实了研究结果的可靠性。这一深度学习工具增强了我们对局部放疗后癌细胞动态的了解。形态学分析和生长建模等先进的分析技术让我们深入了解了PDT对肝细胞癌(HCC)细胞的影响,从而有可能提高癌症治疗效果。总之,这项研究探讨了深度学习在优化 PDT 参数以实现肿瘤治疗个性化和提高疗效方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Insights into the Dynamic Effects of Photodynamic Therapy on Cancer Cells
Photodynamic therapy (PDT) shows promise in tumor treatment, particularly when combined with nanotechnology. This study examines the impact of deep learning, particularly the Cellpose algorithm, on the comprehension of cancer cell responses to PDT. The Cellpose algorithm enables robust morphological analysis of cancer cells, while logistic growth modelling predicts cellular behavior post-PDT. Rigorous model validation ensures the accuracy of the findings. Cellpose demonstrates significant morphological changes after PDT, affecting cellular proliferation and survival. The reliability of the findings is confirmed by model validation. This deep learning tool enhances our understanding of cancer cell dynamics after PDT. Advanced analytical techniques, such as morphological analysis and growth modeling, provide insights into the effects of PDT on hepatocellular carcinoma (HCC) cells, which could potentially improve cancer treatment efficacy. In summary, the research examines the role of deep learning in optimizing PDT parameters to personalize oncology treatment and improve efficacy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信