环上的-奇数的一些计算公式

IF 0.6 4区 数学 Q3 MATHEMATICS
FLAVIEN MABILAT
{"title":"环上的-奇数的一些计算公式","authors":"FLAVIEN MABILAT","doi":"10.1017/s0004972724000340","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>The <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000340_inline3.png\"/>\n\t\t<jats:tex-math>\n$\\lambda $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-quiddities of size <jats:italic>n</jats:italic> are <jats:italic>n</jats:italic>-tuples of elements of a fixed set, solutions of a matrix equation appearing in the study of Coxeter’s friezes. Their number and properties are closely linked to the structure and the cardinality of the chosen set. Our main objective is an explicit formula giving the number of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000340_inline4.png\"/>\n\t\t<jats:tex-math>\n$\\lambda $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-quiddities of odd size, and a lower and upper bound for the number of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000340_inline5.png\"/>\n\t\t<jats:tex-math>\n$\\lambda $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-quiddities of even size, over the rings <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000340_inline6.png\"/>\n\t\t<jats:tex-math>\n${\\mathbb {Z}}/2^{m}{\\mathbb {Z}}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> (<jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000340_inline7.png\"/>\n\t\t<jats:tex-math>\n$m \\geq 2$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>). We also give explicit formulae for the number of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000340_inline8.png\"/>\n\t\t<jats:tex-math>\n$\\lambda $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-quiddities of size <jats:italic>n</jats:italic> over <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000340_inline9.png\"/>\n\t\t<jats:tex-math>\n${\\mathbb {Z}}/8{\\mathbb {Z}}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>.</jats:p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOME COUNTING FORMULAE FOR -QUIDDITIES OVER THE RINGS\",\"authors\":\"FLAVIEN MABILAT\",\"doi\":\"10.1017/s0004972724000340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\t <jats:p>The <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000340_inline3.png\\\"/>\\n\\t\\t<jats:tex-math>\\n$\\\\lambda $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>-quiddities of size <jats:italic>n</jats:italic> are <jats:italic>n</jats:italic>-tuples of elements of a fixed set, solutions of a matrix equation appearing in the study of Coxeter’s friezes. Their number and properties are closely linked to the structure and the cardinality of the chosen set. Our main objective is an explicit formula giving the number of <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000340_inline4.png\\\"/>\\n\\t\\t<jats:tex-math>\\n$\\\\lambda $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>-quiddities of odd size, and a lower and upper bound for the number of <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000340_inline5.png\\\"/>\\n\\t\\t<jats:tex-math>\\n$\\\\lambda $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>-quiddities of even size, over the rings <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000340_inline6.png\\\"/>\\n\\t\\t<jats:tex-math>\\n${\\\\mathbb {Z}}/2^{m}{\\\\mathbb {Z}}$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> (<jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000340_inline7.png\\\"/>\\n\\t\\t<jats:tex-math>\\n$m \\\\geq 2$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>). We also give explicit formulae for the number of <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000340_inline8.png\\\"/>\\n\\t\\t<jats:tex-math>\\n$\\\\lambda $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>-quiddities of size <jats:italic>n</jats:italic> over <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000340_inline9.png\\\"/>\\n\\t\\t<jats:tex-math>\\n${\\\\mathbb {Z}}/8{\\\\mathbb {Z}}$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>.</jats:p>\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972724000340\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000340","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

大小为 n 的 $\lambda $ -quiddities 是一个固定集合的 n 个元素元组,是考克赛特门楣研究中出现的矩阵方程的解。它们的数量和性质与所选集合的结构和万有引力密切相关。我们的主要目标是给出奇数大小的$\lambda $ -quiddities的明确公式,以及偶数大小的$\lambda $ -quiddities的下限和上限,它们都在${mathbb {Z}}/2^{m}{mathbb {Z}}$ ($m \geq 2$)环上。我们还给出了在 ${mathbb {Z}}/8{mathbb {Z}}$ 上大小为 n 的 $\lambda $ -quiddities 的明确公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SOME COUNTING FORMULAE FOR -QUIDDITIES OVER THE RINGS
The $\lambda $ -quiddities of size n are n-tuples of elements of a fixed set, solutions of a matrix equation appearing in the study of Coxeter’s friezes. Their number and properties are closely linked to the structure and the cardinality of the chosen set. Our main objective is an explicit formula giving the number of $\lambda $ -quiddities of odd size, and a lower and upper bound for the number of $\lambda $ -quiddities of even size, over the rings ${\mathbb {Z}}/2^{m}{\mathbb {Z}}$ ( $m \geq 2$ ). We also give explicit formulae for the number of $\lambda $ -quiddities of size n over ${\mathbb {Z}}/8{\mathbb {Z}}$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信