具有𝑛 + 4 个顶点且布赫施塔伯数最大的 (𝑛 - 1) 球体的特征描述

Suyoung Choi, Hyeontae Jang, Mathieu Vallée
{"title":"具有𝑛 + 4 个顶点且布赫施塔伯数最大的 (𝑛 - 1) 球体的特征描述","authors":"Suyoung Choi, Hyeontae Jang, Mathieu Vallée","doi":"10.1515/crelle-2024-0027","DOIUrl":null,"url":null,"abstract":"\n We present a computationally efficient algorithm that is suitable for graphic processing unit implementation.\nThis algorithm enables the identification of all weak pseudo-manifolds that meet specific facet conditions, drawn from a given input set.\nWe employ this approach to enumerate toric colorable seeds.\nConsequently, we achieve a comprehensive characterization of \n \n \n \n (\n \n n\n −\n 1\n \n )\n \n \n \n (n-1)\n \n -dimensional PL spheres with \n \n \n \n n\n +\n 4\n \n \n \n n+4\n \n vertices that possess a maximal Buchstaber number.\nA primary focus of this research is the fundamental categorization of non-singular complete toric varieties of Picard number 4.\nThis classification serves as a valuable tool for addressing questions related to toric manifolds of Picard number 4.\nNotably, we have determined which of these manifolds satisfy equality within an inequality regarding the number of minimal components in their rational curve space.\nThis addresses a question posed by Chen, Fu, and Hwang in 2014 for this specific case.","PeriodicalId":508691,"journal":{"name":"Journal für die reine und angewandte Mathematik (Crelles Journal)","volume":"60 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The characterization of (𝑛 − 1)-spheres with 𝑛 + 4 vertices having maximal Buchstaber number\",\"authors\":\"Suyoung Choi, Hyeontae Jang, Mathieu Vallée\",\"doi\":\"10.1515/crelle-2024-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We present a computationally efficient algorithm that is suitable for graphic processing unit implementation.\\nThis algorithm enables the identification of all weak pseudo-manifolds that meet specific facet conditions, drawn from a given input set.\\nWe employ this approach to enumerate toric colorable seeds.\\nConsequently, we achieve a comprehensive characterization of \\n \\n \\n \\n (\\n \\n n\\n −\\n 1\\n \\n )\\n \\n \\n \\n (n-1)\\n \\n -dimensional PL spheres with \\n \\n \\n \\n n\\n +\\n 4\\n \\n \\n \\n n+4\\n \\n vertices that possess a maximal Buchstaber number.\\nA primary focus of this research is the fundamental categorization of non-singular complete toric varieties of Picard number 4.\\nThis classification serves as a valuable tool for addressing questions related to toric manifolds of Picard number 4.\\nNotably, we have determined which of these manifolds satisfy equality within an inequality regarding the number of minimal components in their rational curve space.\\nThis addresses a question posed by Chen, Fu, and Hwang in 2014 for this specific case.\",\"PeriodicalId\":508691,\"journal\":{\"name\":\"Journal für die reine und angewandte Mathematik (Crelles Journal)\",\"volume\":\"60 13\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal für die reine und angewandte Mathematik (Crelles Journal)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2024-0027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal für die reine und angewandte Mathematik (Crelles Journal)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/crelle-2024-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种适用于图形处理单元实现的高效计算算法,该算法可以从给定的输入集合中识别出符合特定面条件的所有弱伪流形。我们利用这种方法列举了环状可着色种子,从而全面描述了具有 n + 4 n+4 顶点且拥有最大布赫斯塔伯数的 ( n - 1 ) (n-1) 维 PL 球。这项研究的一个主要重点是对皮卡尔数 4 的非星形完全环状品种进行基本分类。这个分类是解决与皮卡尔数 4 的环状流形相关问题的一个有价值的工具。值得注意的是,我们确定了这些流形中哪些流形在其有理曲线空间中的最小分量数方面满足不等式内的相等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The characterization of (𝑛 − 1)-spheres with 𝑛 + 4 vertices having maximal Buchstaber number
We present a computationally efficient algorithm that is suitable for graphic processing unit implementation. This algorithm enables the identification of all weak pseudo-manifolds that meet specific facet conditions, drawn from a given input set. We employ this approach to enumerate toric colorable seeds. Consequently, we achieve a comprehensive characterization of ( n − 1 ) (n-1) -dimensional PL spheres with n + 4 n+4 vertices that possess a maximal Buchstaber number. A primary focus of this research is the fundamental categorization of non-singular complete toric varieties of Picard number 4. This classification serves as a valuable tool for addressing questions related to toric manifolds of Picard number 4. Notably, we have determined which of these manifolds satisfy equality within an inequality regarding the number of minimal components in their rational curve space. This addresses a question posed by Chen, Fu, and Hwang in 2014 for this specific case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信