{"title":"通过 Duffing - Van Der Pol 恢复扭矩提高随机雷暴中扭转-扑翼收割机的输出功率","authors":"Luca Caracoglia","doi":"10.1115/1.4065532","DOIUrl":null,"url":null,"abstract":"\n Wind energy harvesters are usually designed to operate in the low wind speed range. They rely on smaller swept areas, as a complement to larger horizontal-axis wind turbines. A torsional-flutter-based apparatus is investigated herein to extract wind energy. A nonlinear hybrid restoring toque mechanism, installed at equally spaced supports, is used to produce energy through limit-cycle vibration. Energy conversion and storage from the wind flow are enabled by eddy currents. The apparatus is used during thunderstorm outflows to explore the efficiency in non-ideal wind conditions. The thunderstorm flow model accounts for both non-stationary turbulence and slowly varying mean speed, replicating thunderstorm's intensification and decay stages. This paper evolves from a recent study to examine stochastic stability. More Specifically, the output power is a random process that is derived numerically. Various thunderstorm features and variable apparatus configurations are evaluated. Numerical investigations confirm the detrimental effect of non-ideal, thunderstorms on harvester performance with, on average, an adverse increment of operational speed (about +30\\%). Besides nonlinear damping, the benign flutter-prone effect is controlled by the square of the flapping angle. Since flapping amplitudes are moderate at sustained flutter, activation of the apparatus is delayed and exacerbated by the non-stationary outflow and aeroelastic load features. Finally, efficiency is carefully investigated by quantification of output power and “quality factor”.","PeriodicalId":504755,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering","volume":"10 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Output Power of a Torsional-Flutter Harvester in Stochastic Thunderstorms by Duffing - Van Der Pol Restoring Torque\",\"authors\":\"Luca Caracoglia\",\"doi\":\"10.1115/1.4065532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Wind energy harvesters are usually designed to operate in the low wind speed range. They rely on smaller swept areas, as a complement to larger horizontal-axis wind turbines. A torsional-flutter-based apparatus is investigated herein to extract wind energy. A nonlinear hybrid restoring toque mechanism, installed at equally spaced supports, is used to produce energy through limit-cycle vibration. Energy conversion and storage from the wind flow are enabled by eddy currents. The apparatus is used during thunderstorm outflows to explore the efficiency in non-ideal wind conditions. The thunderstorm flow model accounts for both non-stationary turbulence and slowly varying mean speed, replicating thunderstorm's intensification and decay stages. This paper evolves from a recent study to examine stochastic stability. More Specifically, the output power is a random process that is derived numerically. Various thunderstorm features and variable apparatus configurations are evaluated. Numerical investigations confirm the detrimental effect of non-ideal, thunderstorms on harvester performance with, on average, an adverse increment of operational speed (about +30\\\\%). Besides nonlinear damping, the benign flutter-prone effect is controlled by the square of the flapping angle. Since flapping amplitudes are moderate at sustained flutter, activation of the apparatus is delayed and exacerbated by the non-stationary outflow and aeroelastic load features. Finally, efficiency is carefully investigated by quantification of output power and “quality factor”.\",\"PeriodicalId\":504755,\"journal\":{\"name\":\"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering\",\"volume\":\"10 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving Output Power of a Torsional-Flutter Harvester in Stochastic Thunderstorms by Duffing - Van Der Pol Restoring Torque
Wind energy harvesters are usually designed to operate in the low wind speed range. They rely on smaller swept areas, as a complement to larger horizontal-axis wind turbines. A torsional-flutter-based apparatus is investigated herein to extract wind energy. A nonlinear hybrid restoring toque mechanism, installed at equally spaced supports, is used to produce energy through limit-cycle vibration. Energy conversion and storage from the wind flow are enabled by eddy currents. The apparatus is used during thunderstorm outflows to explore the efficiency in non-ideal wind conditions. The thunderstorm flow model accounts for both non-stationary turbulence and slowly varying mean speed, replicating thunderstorm's intensification and decay stages. This paper evolves from a recent study to examine stochastic stability. More Specifically, the output power is a random process that is derived numerically. Various thunderstorm features and variable apparatus configurations are evaluated. Numerical investigations confirm the detrimental effect of non-ideal, thunderstorms on harvester performance with, on average, an adverse increment of operational speed (about +30\%). Besides nonlinear damping, the benign flutter-prone effect is controlled by the square of the flapping angle. Since flapping amplitudes are moderate at sustained flutter, activation of the apparatus is delayed and exacerbated by the non-stationary outflow and aeroelastic load features. Finally, efficiency is carefully investigated by quantification of output power and “quality factor”.