利用数值技术提高离心压缩机的空气动力性能

Shivani S, Amar Murthy A, Srinivas G
{"title":"利用数值技术提高离心压缩机的空气动力性能","authors":"Shivani S, Amar Murthy A, Srinivas G","doi":"10.12688/f1000research.145060.1","DOIUrl":null,"url":null,"abstract":"Background Centrifugal compressors are dynamic machines utilizing a rotating impeller, efficiently accelerate incoming gases, transforming kinetic energy into pressure energy for compression. They serve a wide range of industries, including air conditioning, refrigeration, gas turbines, industrial processes, and applications such as air compression, gas transportation, and petrochemicals, demonstrating their versatility. Designing a centrifugal compressor poses challenges related to achieving high aerodynamic efficiency, surge and choke control, material selection, rotor dynamics, cavitation, erosion, and addressing environmental considerations while balancing costs. Optimizing maintenance, reliability, and energy efficiency are essential aspects of the design process. Methods The primary objective of this research is to comprehensively investigate and improve the aerodynamic performance of centrifugal compressors. To accomplish this, a comprehensive investigation of variables such as blade number and hub diameter, along with various turbulence models will be conducted. This approach will leverage numerical techniques to fill the significant gaps in the current literature regarding centrifugal compressor design and optimization. The study encompasses the evaluation of two turbulence models, namely Shear Stress Transport and K-epsilon. Furthermore, it delves into the fine-tuning of blade geometry, including variations in blade number and hub diameter, aiming to refine the design for optimal performance. Extensive analyses using Ansys CFX encompass key variables such as Pressure, Mach Number, Density, Velocity, Turbulence Kinetic Energy, and Temperature. Results Notably, the optimized pressure profile yielded remarkable results, achieving a substantial 36% improvement, demonstrating the tangible benefits of these design enhancements. Conclusion The outcomes of this research hold significant utility for engineers, manufacturers, and regulatory bodies, offering invaluable insights and guidance to enhance compressor performance and efficiency.","PeriodicalId":504605,"journal":{"name":"F1000Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerodynamic performance enhancement of centrifugal compressor using numerical techniques\",\"authors\":\"Shivani S, Amar Murthy A, Srinivas G\",\"doi\":\"10.12688/f1000research.145060.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background Centrifugal compressors are dynamic machines utilizing a rotating impeller, efficiently accelerate incoming gases, transforming kinetic energy into pressure energy for compression. They serve a wide range of industries, including air conditioning, refrigeration, gas turbines, industrial processes, and applications such as air compression, gas transportation, and petrochemicals, demonstrating their versatility. Designing a centrifugal compressor poses challenges related to achieving high aerodynamic efficiency, surge and choke control, material selection, rotor dynamics, cavitation, erosion, and addressing environmental considerations while balancing costs. Optimizing maintenance, reliability, and energy efficiency are essential aspects of the design process. Methods The primary objective of this research is to comprehensively investigate and improve the aerodynamic performance of centrifugal compressors. To accomplish this, a comprehensive investigation of variables such as blade number and hub diameter, along with various turbulence models will be conducted. This approach will leverage numerical techniques to fill the significant gaps in the current literature regarding centrifugal compressor design and optimization. The study encompasses the evaluation of two turbulence models, namely Shear Stress Transport and K-epsilon. Furthermore, it delves into the fine-tuning of blade geometry, including variations in blade number and hub diameter, aiming to refine the design for optimal performance. Extensive analyses using Ansys CFX encompass key variables such as Pressure, Mach Number, Density, Velocity, Turbulence Kinetic Energy, and Temperature. Results Notably, the optimized pressure profile yielded remarkable results, achieving a substantial 36% improvement, demonstrating the tangible benefits of these design enhancements. Conclusion The outcomes of this research hold significant utility for engineers, manufacturers, and regulatory bodies, offering invaluable insights and guidance to enhance compressor performance and efficiency.\",\"PeriodicalId\":504605,\"journal\":{\"name\":\"F1000Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"F1000Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12688/f1000research.145060.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"F1000Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/f1000research.145060.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景 离心式压缩机是一种动态机器,利用旋转叶轮有效加速进入的气体,将动能转化为压力能进行压缩。离心式压缩机服务于空调、制冷、燃气轮机、工业流程以及空气压缩、气体运输和石油化工等多种行业,充分体现了其多功能性。设计离心式压缩机面临的挑战包括实现高空气动力效率、浪涌和阻塞控制、材料选择、转子动力学、气蚀、侵蚀,以及在平衡成本的同时考虑环境因素。优化维护、可靠性和能效是设计过程的重要方面。方法 本研究的主要目的是全面调查和改进离心式压缩机的空气动力性能。为此,将对叶片数和轮毂直径等变量以及各种湍流模型进行全面研究。这种方法将利用数值技术填补目前文献中有关离心压缩机设计和优化的重大空白。这项研究包括对两种湍流模型的评估,即剪应力传输模型和 K-epsilon 模型。此外,研究还深入探讨了叶片几何形状的微调,包括叶片数量和轮毂直径的变化,旨在完善设计,实现最佳性能。使用 Ansys CFX 进行的大量分析包括压力、马赫数、密度、速度、湍流动能和温度等关键变量。结果 值得注意的是,优化后的压力曲线效果显著,实现了 36% 的大幅改进,证明了这些设计改进所带来的实实在在的好处。结论 这项研究的成果对工程师、制造商和监管机构具有重大意义,为提高压缩机的性能和效率提供了宝贵的见解和指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aerodynamic performance enhancement of centrifugal compressor using numerical techniques
Background Centrifugal compressors are dynamic machines utilizing a rotating impeller, efficiently accelerate incoming gases, transforming kinetic energy into pressure energy for compression. They serve a wide range of industries, including air conditioning, refrigeration, gas turbines, industrial processes, and applications such as air compression, gas transportation, and petrochemicals, demonstrating their versatility. Designing a centrifugal compressor poses challenges related to achieving high aerodynamic efficiency, surge and choke control, material selection, rotor dynamics, cavitation, erosion, and addressing environmental considerations while balancing costs. Optimizing maintenance, reliability, and energy efficiency are essential aspects of the design process. Methods The primary objective of this research is to comprehensively investigate and improve the aerodynamic performance of centrifugal compressors. To accomplish this, a comprehensive investigation of variables such as blade number and hub diameter, along with various turbulence models will be conducted. This approach will leverage numerical techniques to fill the significant gaps in the current literature regarding centrifugal compressor design and optimization. The study encompasses the evaluation of two turbulence models, namely Shear Stress Transport and K-epsilon. Furthermore, it delves into the fine-tuning of blade geometry, including variations in blade number and hub diameter, aiming to refine the design for optimal performance. Extensive analyses using Ansys CFX encompass key variables such as Pressure, Mach Number, Density, Velocity, Turbulence Kinetic Energy, and Temperature. Results Notably, the optimized pressure profile yielded remarkable results, achieving a substantial 36% improvement, demonstrating the tangible benefits of these design enhancements. Conclusion The outcomes of this research hold significant utility for engineers, manufacturers, and regulatory bodies, offering invaluable insights and guidance to enhance compressor performance and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信