{"title":"接触剪应力在各向同性弹性圆盘中引起的应力场及其对巴西试验强度表征的影响","authors":"Diego-José Guerrero-Miguel, María-Belén Prendes-Gero, Martina-Inmaculada Álvarez-Fernández, Celestino González-Nicieza","doi":"10.1007/s10659-024-10072-x","DOIUrl":null,"url":null,"abstract":"<div><p>Tensile strength characterization of brittle materials by means of uniaxial tensile tests is often unfeasible, as most samples form chips during specimen preparation, leading to unacceptable geometric deviations. For this reason, the disc specimens used in Brazilian tests to determine indirect tensile strength are preferred. Despite its influence on the induced stress field and the location of the failure initiation point, the actual stress distribution along the contact is still under debate. In the present work, the complex variable method is used to develop a new analytical formulation based on the simplest possible shear stress distribution along the disc boundary that fulfils elastic equilibrium. Based on this formulation, an integration method is used to obtain the stress field generated inside specimens—elastic discs—that are subjected to distributed shear forces on their contact rims. An application of this method to the Brazilian test case is performed, proving that shear and frictional forces can be considered simultaneously. Furthermore, a mathematical procedure to simultaneously consider radial and shear stress distributions along the loaded boundary is developed to determine any possible stress field for relevant practical applications. The results confirm that shearing significantly increases stress in the vicinity of the contact area, which may explain the wedge failure pattern sometimes observed in real test specimens. Additionally, the proposed formulation guarantees that if failure is initiated in the centre of the specimen, the applied shear stress distribution no longer influences the indirect tensile strength of the material, although it influences the final test output if failure is initiated at any other point along the vertical diameter.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"156 3","pages":"721 - 737"},"PeriodicalIF":1.8000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Induced Stress Fields in Isotropic Elastic Discs Due to Contact Shear Stresses and Their Implications for Brazilian Test Strength Characterization\",\"authors\":\"Diego-José Guerrero-Miguel, María-Belén Prendes-Gero, Martina-Inmaculada Álvarez-Fernández, Celestino González-Nicieza\",\"doi\":\"10.1007/s10659-024-10072-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tensile strength characterization of brittle materials by means of uniaxial tensile tests is often unfeasible, as most samples form chips during specimen preparation, leading to unacceptable geometric deviations. For this reason, the disc specimens used in Brazilian tests to determine indirect tensile strength are preferred. Despite its influence on the induced stress field and the location of the failure initiation point, the actual stress distribution along the contact is still under debate. In the present work, the complex variable method is used to develop a new analytical formulation based on the simplest possible shear stress distribution along the disc boundary that fulfils elastic equilibrium. Based on this formulation, an integration method is used to obtain the stress field generated inside specimens—elastic discs—that are subjected to distributed shear forces on their contact rims. An application of this method to the Brazilian test case is performed, proving that shear and frictional forces can be considered simultaneously. Furthermore, a mathematical procedure to simultaneously consider radial and shear stress distributions along the loaded boundary is developed to determine any possible stress field for relevant practical applications. The results confirm that shearing significantly increases stress in the vicinity of the contact area, which may explain the wedge failure pattern sometimes observed in real test specimens. Additionally, the proposed formulation guarantees that if failure is initiated in the centre of the specimen, the applied shear stress distribution no longer influences the indirect tensile strength of the material, although it influences the final test output if failure is initiated at any other point along the vertical diameter.</p></div>\",\"PeriodicalId\":624,\"journal\":{\"name\":\"Journal of Elasticity\",\"volume\":\"156 3\",\"pages\":\"721 - 737\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Elasticity\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10659-024-10072-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-024-10072-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Induced Stress Fields in Isotropic Elastic Discs Due to Contact Shear Stresses and Their Implications for Brazilian Test Strength Characterization
Tensile strength characterization of brittle materials by means of uniaxial tensile tests is often unfeasible, as most samples form chips during specimen preparation, leading to unacceptable geometric deviations. For this reason, the disc specimens used in Brazilian tests to determine indirect tensile strength are preferred. Despite its influence on the induced stress field and the location of the failure initiation point, the actual stress distribution along the contact is still under debate. In the present work, the complex variable method is used to develop a new analytical formulation based on the simplest possible shear stress distribution along the disc boundary that fulfils elastic equilibrium. Based on this formulation, an integration method is used to obtain the stress field generated inside specimens—elastic discs—that are subjected to distributed shear forces on their contact rims. An application of this method to the Brazilian test case is performed, proving that shear and frictional forces can be considered simultaneously. Furthermore, a mathematical procedure to simultaneously consider radial and shear stress distributions along the loaded boundary is developed to determine any possible stress field for relevant practical applications. The results confirm that shearing significantly increases stress in the vicinity of the contact area, which may explain the wedge failure pattern sometimes observed in real test specimens. Additionally, the proposed formulation guarantees that if failure is initiated in the centre of the specimen, the applied shear stress distribution no longer influences the indirect tensile strength of the material, although it influences the final test output if failure is initiated at any other point along the vertical diameter.
期刊介绍:
The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.