Vladimir Gol’dshtein, Valerii Pchelintsev, Alexander Ukhlov
{"title":"索波列夫扩展域中椭圆算子的诺依曼特征值","authors":"Vladimir Gol’dshtein, Valerii Pchelintsev, Alexander Ukhlov","doi":"10.1007/s13324-024-00926-x","DOIUrl":null,"url":null,"abstract":"<div><p>We obtain estimates of Neumann eigenvalues of the divergence form elliptic operators in Sobolev extension domains. The suggested approach is based on connections between divergence form elliptic operators and quasiconformal mappings. The connection between Neumann eigenvalues of elliptic operators and the smallest-circle problem (initially suggested by J. J. Sylvester in 1857) is given.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-024-00926-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Neumann eigenvalues of elliptic operators in Sobolev extension domains\",\"authors\":\"Vladimir Gol’dshtein, Valerii Pchelintsev, Alexander Ukhlov\",\"doi\":\"10.1007/s13324-024-00926-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We obtain estimates of Neumann eigenvalues of the divergence form elliptic operators in Sobolev extension domains. The suggested approach is based on connections between divergence form elliptic operators and quasiconformal mappings. The connection between Neumann eigenvalues of elliptic operators and the smallest-circle problem (initially suggested by J. J. Sylvester in 1857) is given.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"14 3\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13324-024-00926-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-024-00926-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00926-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们获得了索波列夫扩展域中发散形式椭圆算子的诺伊曼特征值估计值。所建议的方法基于发散形式椭圆算子与准共形映射之间的联系。给出了椭圆算子的 Neumann 特征值与最小圆问题(最初由 J. J. Sylvester 于 1857 年提出)之间的联系。
Neumann eigenvalues of elliptic operators in Sobolev extension domains
We obtain estimates of Neumann eigenvalues of the divergence form elliptic operators in Sobolev extension domains. The suggested approach is based on connections between divergence form elliptic operators and quasiconformal mappings. The connection between Neumann eigenvalues of elliptic operators and the smallest-circle problem (initially suggested by J. J. Sylvester in 1857) is given.
期刊介绍:
Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.