{"title":"群体蛋白质组学在健康和疾病方面的前景与挑战。","authors":"Benjamin B Sun, Karsten Suhre, Bradford W Gibson","doi":"10.1016/j.mcpro.2024.100786","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in proteomic assay technologies have significantly increased coverage and throughput, enabling recent increases in the number of large-scale population-based proteomic studies of human plasma and serum. Improvements in multiplexed protein assays have facilitated the quantification of thousands of proteins over a large dynamic range, a key requirement for detecting the lowest-ranging, and potentially the most disease-relevant, blood-circulating proteins. In this perspective, we examine how populational proteomic datasets in conjunction with other concurrent omic measures can be leveraged to better understand the genomic and non-genomic correlates of the soluble proteome, constructing biomarker panels for disease prediction, among others. Mass spectrometry workflows are discussed as they are becoming increasingly competitive with affinity-based array platforms in terms of speed, cost, and proteome coverage due to advances in both instrumentation and workflows. Despite much success, there remain considerable challenges such as orthogonal validation and absolute quantification. We also highlight emergent challenges associated with study design, analytical considerations, and data integration as population-scale studies are run in batches and may involve longitudinal samples collated over many years. Lastly, we take a look at the future of what the nascent next-generation proteomic technologies might provide to the analysis of large sets of blood samples, as well as the difficulties in designing large-scale studies that will likely require participation from multiple and complex funding sources and where data sharing, study designs, and financing must be solved.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100786"},"PeriodicalIF":6.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193116/pdf/","citationCount":"0","resultStr":"{\"title\":\"Promises and Challenges of populational Proteomics in Health and Disease.\",\"authors\":\"Benjamin B Sun, Karsten Suhre, Bradford W Gibson\",\"doi\":\"10.1016/j.mcpro.2024.100786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advances in proteomic assay technologies have significantly increased coverage and throughput, enabling recent increases in the number of large-scale population-based proteomic studies of human plasma and serum. Improvements in multiplexed protein assays have facilitated the quantification of thousands of proteins over a large dynamic range, a key requirement for detecting the lowest-ranging, and potentially the most disease-relevant, blood-circulating proteins. In this perspective, we examine how populational proteomic datasets in conjunction with other concurrent omic measures can be leveraged to better understand the genomic and non-genomic correlates of the soluble proteome, constructing biomarker panels for disease prediction, among others. Mass spectrometry workflows are discussed as they are becoming increasingly competitive with affinity-based array platforms in terms of speed, cost, and proteome coverage due to advances in both instrumentation and workflows. Despite much success, there remain considerable challenges such as orthogonal validation and absolute quantification. We also highlight emergent challenges associated with study design, analytical considerations, and data integration as population-scale studies are run in batches and may involve longitudinal samples collated over many years. Lastly, we take a look at the future of what the nascent next-generation proteomic technologies might provide to the analysis of large sets of blood samples, as well as the difficulties in designing large-scale studies that will likely require participation from multiple and complex funding sources and where data sharing, study designs, and financing must be solved.</p>\",\"PeriodicalId\":18712,\"journal\":{\"name\":\"Molecular & Cellular Proteomics\",\"volume\":\" \",\"pages\":\"100786\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193116/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & Cellular Proteomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mcpro.2024.100786\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2024.100786","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Promises and Challenges of populational Proteomics in Health and Disease.
Advances in proteomic assay technologies have significantly increased coverage and throughput, enabling recent increases in the number of large-scale population-based proteomic studies of human plasma and serum. Improvements in multiplexed protein assays have facilitated the quantification of thousands of proteins over a large dynamic range, a key requirement for detecting the lowest-ranging, and potentially the most disease-relevant, blood-circulating proteins. In this perspective, we examine how populational proteomic datasets in conjunction with other concurrent omic measures can be leveraged to better understand the genomic and non-genomic correlates of the soluble proteome, constructing biomarker panels for disease prediction, among others. Mass spectrometry workflows are discussed as they are becoming increasingly competitive with affinity-based array platforms in terms of speed, cost, and proteome coverage due to advances in both instrumentation and workflows. Despite much success, there remain considerable challenges such as orthogonal validation and absolute quantification. We also highlight emergent challenges associated with study design, analytical considerations, and data integration as population-scale studies are run in batches and may involve longitudinal samples collated over many years. Lastly, we take a look at the future of what the nascent next-generation proteomic technologies might provide to the analysis of large sets of blood samples, as well as the difficulties in designing large-scale studies that will likely require participation from multiple and complex funding sources and where data sharing, study designs, and financing must be solved.
期刊介绍:
The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action.
The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data.
Scope:
-Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights
-Novel experimental and computational technologies
-Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes
-Pathway and network analyses of signaling that focus on the roles of post-translational modifications
-Studies of proteome dynamics and quality controls, and their roles in disease
-Studies of evolutionary processes effecting proteome dynamics, quality and regulation
-Chemical proteomics, including mechanisms of drug action
-Proteomics of the immune system and antigen presentation/recognition
-Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease
-Clinical and translational studies of human diseases
-Metabolomics to understand functional connections between genes, proteins and phenotypes