Gayathri Seenivasan, Sarwat Asma Ziya Ahmad, Nikhil Kumar Tuti, Unnikrishnan P. Shaji, Susmita Das, Faiz Ahmed Khan, Roy Anindya
{"title":"对作为酪氨酸酶激活剂和抑制剂的一组呋喃色烯酮进行评估。","authors":"Gayathri Seenivasan, Sarwat Asma Ziya Ahmad, Nikhil Kumar Tuti, Unnikrishnan P. Shaji, Susmita Das, Faiz Ahmed Khan, Roy Anindya","doi":"10.1111/cbdd.14539","DOIUrl":null,"url":null,"abstract":"<p>Tyrosinase is a copper-containing enzyme involved in the biosynthesis of melanin pigment. While the excess production of melanin causes hyperpigmentation of human skin, hypopigmentation results in medical conditions like vitiligo. Tyrosinase inhibitors could be used as efficient skin whitening agents and tyrosinase agonists could be used for enhanced melanin synthesis and skin protection from UV exposure. Among a wide range of tyrosinase-regulating compounds, natural and synthetic derivatives of furochromenones, such as 8-methoxypsoralen (8-MOP), are known to both activate and inhibit tyrosinase. We recently reported a synthetic approach to generate a variety of dihydrofuro[3,2-c]chromenones and furo[3,2-c]chromenones in a metal-free condition. In the present study, we investigated these compounds for their potential as antagonists or agonists of tyrosinase. Using fungal tyrosinase-based in vitro biochemical assay, we obtained one compound (<b>3k</b>) which could inhibit tyrosinase activity, and the other compound (<b>4f</b>) that stimulated tyrosinase activity. The kinetic studies revealed that compound <b>3k</b> caused ‘mixed’ type tyrosinase inhibition and <b>4f</b> stimulated the catalytic efficiency. Studying the mechanisms of these compounds may provide a basis for the development of new effective tyrosinase inhibitors or activators.</p>","PeriodicalId":143,"journal":{"name":"Chemical Biology & Drug Design","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of a panel of furochromenones as the activator and inhibitor of tyrosinase\",\"authors\":\"Gayathri Seenivasan, Sarwat Asma Ziya Ahmad, Nikhil Kumar Tuti, Unnikrishnan P. Shaji, Susmita Das, Faiz Ahmed Khan, Roy Anindya\",\"doi\":\"10.1111/cbdd.14539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tyrosinase is a copper-containing enzyme involved in the biosynthesis of melanin pigment. While the excess production of melanin causes hyperpigmentation of human skin, hypopigmentation results in medical conditions like vitiligo. Tyrosinase inhibitors could be used as efficient skin whitening agents and tyrosinase agonists could be used for enhanced melanin synthesis and skin protection from UV exposure. Among a wide range of tyrosinase-regulating compounds, natural and synthetic derivatives of furochromenones, such as 8-methoxypsoralen (8-MOP), are known to both activate and inhibit tyrosinase. We recently reported a synthetic approach to generate a variety of dihydrofuro[3,2-c]chromenones and furo[3,2-c]chromenones in a metal-free condition. In the present study, we investigated these compounds for their potential as antagonists or agonists of tyrosinase. Using fungal tyrosinase-based in vitro biochemical assay, we obtained one compound (<b>3k</b>) which could inhibit tyrosinase activity, and the other compound (<b>4f</b>) that stimulated tyrosinase activity. The kinetic studies revealed that compound <b>3k</b> caused ‘mixed’ type tyrosinase inhibition and <b>4f</b> stimulated the catalytic efficiency. Studying the mechanisms of these compounds may provide a basis for the development of new effective tyrosinase inhibitors or activators.</p>\",\"PeriodicalId\":143,\"journal\":{\"name\":\"Chemical Biology & Drug Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Biology & Drug Design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.14539\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Biology & Drug Design","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.14539","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Evaluation of a panel of furochromenones as the activator and inhibitor of tyrosinase
Tyrosinase is a copper-containing enzyme involved in the biosynthesis of melanin pigment. While the excess production of melanin causes hyperpigmentation of human skin, hypopigmentation results in medical conditions like vitiligo. Tyrosinase inhibitors could be used as efficient skin whitening agents and tyrosinase agonists could be used for enhanced melanin synthesis and skin protection from UV exposure. Among a wide range of tyrosinase-regulating compounds, natural and synthetic derivatives of furochromenones, such as 8-methoxypsoralen (8-MOP), are known to both activate and inhibit tyrosinase. We recently reported a synthetic approach to generate a variety of dihydrofuro[3,2-c]chromenones and furo[3,2-c]chromenones in a metal-free condition. In the present study, we investigated these compounds for their potential as antagonists or agonists of tyrosinase. Using fungal tyrosinase-based in vitro biochemical assay, we obtained one compound (3k) which could inhibit tyrosinase activity, and the other compound (4f) that stimulated tyrosinase activity. The kinetic studies revealed that compound 3k caused ‘mixed’ type tyrosinase inhibition and 4f stimulated the catalytic efficiency. Studying the mechanisms of these compounds may provide a basis for the development of new effective tyrosinase inhibitors or activators.
期刊介绍:
Chemical Biology & Drug Design is a peer-reviewed scientific journal that is dedicated to the advancement of innovative science, technology and medicine with a focus on the multidisciplinary fields of chemical biology and drug design. It is the aim of Chemical Biology & Drug Design to capture significant research and drug discovery that highlights new concepts, insight and new findings within the scope of chemical biology and drug design.