在温和的温度和大气压力下催化 2, 4, 4' 三氯联苯的加氢脱氯反应。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-07-01 Epub Date: 2024-06-07 DOI:10.1080/10962247.2024.2353643
Kevin Johnson, Juan Xu, Alyssa Yerkeson, Mingming Lu
{"title":"在温和的温度和大气压力下催化 2, 4, 4' 三氯联苯的加氢脱氯反应。","authors":"Kevin Johnson, Juan Xu, Alyssa Yerkeson, Mingming Lu","doi":"10.1080/10962247.2024.2353643","DOIUrl":null,"url":null,"abstract":"<p><p>Polychlorinated biphenyls (PCBs), including all 209 congeners, are designated as persistent organic pollutants (POPs) due to their high toxicity and bioaccumulation in human bodies and the ecosystem. The need for PCB remediation still remains long after their production ban. In this study, a catalytic hydro-dechlorination (HDC) method was employed to dechlorinate 2,4,4'-trichlorobiphenyl (PCB 28), a congener found ubiquitously in multiple environmental media. The HDC of PCB 28 was experimentally studied at mild temperatures viz. ~20, 50, and ~77°C and atmospheric pressure. Et<sub>3</sub>N (triethylamine) was added as a co-catalyst. The dechlorination rates increased with temperature as well as Et<sub>3</sub>N dosage, and the HDC pathway was hypothesized based on the product and intermediates observed. The less chlorinated intermediates suggested that the position of the chlorine strongly impacted HDC rates, and the preference of HDC at para positions can be orders of magnitudes higher than the ortho. The activation energy was estimated in the range of 12.4-13.9 kJ/mole, indicating a diffusion-controlled HDC system.<i>Implications:</i> The remediation need for polychlorinated biphenyls (PCBs) still remains long after their production ban around the world. The development of low-cost methods is highly desirable, especially for developing countries, in response to the Stockholm Convention. In this study, the dechorination of a ubiquitously present PCB congener was studied using a catalytic hydro-dechlorination (HDC) method in low temperatures up to ~77°C and was able to achieve near 100% dechlorination in 6 hr. Results indicated that the HDC process can be performed under mild temperatures and atmospheric conditions and can be a potential solution to real world PCB contamination issues.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The catalytic hydro-dechlorination of 2, 4, 4' trichlorobiphenyl at mild temperatures and atmospheric pressure.\",\"authors\":\"Kevin Johnson, Juan Xu, Alyssa Yerkeson, Mingming Lu\",\"doi\":\"10.1080/10962247.2024.2353643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polychlorinated biphenyls (PCBs), including all 209 congeners, are designated as persistent organic pollutants (POPs) due to their high toxicity and bioaccumulation in human bodies and the ecosystem. The need for PCB remediation still remains long after their production ban. In this study, a catalytic hydro-dechlorination (HDC) method was employed to dechlorinate 2,4,4'-trichlorobiphenyl (PCB 28), a congener found ubiquitously in multiple environmental media. The HDC of PCB 28 was experimentally studied at mild temperatures viz. ~20, 50, and ~77°C and atmospheric pressure. Et<sub>3</sub>N (triethylamine) was added as a co-catalyst. The dechlorination rates increased with temperature as well as Et<sub>3</sub>N dosage, and the HDC pathway was hypothesized based on the product and intermediates observed. The less chlorinated intermediates suggested that the position of the chlorine strongly impacted HDC rates, and the preference of HDC at para positions can be orders of magnitudes higher than the ortho. The activation energy was estimated in the range of 12.4-13.9 kJ/mole, indicating a diffusion-controlled HDC system.<i>Implications:</i> The remediation need for polychlorinated biphenyls (PCBs) still remains long after their production ban around the world. The development of low-cost methods is highly desirable, especially for developing countries, in response to the Stockholm Convention. In this study, the dechorination of a ubiquitously present PCB congener was studied using a catalytic hydro-dechlorination (HDC) method in low temperatures up to ~77°C and was able to achieve near 100% dechlorination in 6 hr. Results indicated that the HDC process can be performed under mild temperatures and atmospheric conditions and can be a potential solution to real world PCB contamination issues.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10962247.2024.2353643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10962247.2024.2353643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

影响说明:在全球禁止生产多氯联苯(PCBs)很久之后,仍然需要对其进行补救。为响应《斯德哥尔摩公约》,开发低成本方法是非常可取的,尤其是对发展中国家而言。本研究采用催化加氢脱氯(HDC)方法,在低温(约 77 摄氏度)条件下对一种普遍存在的多氯联苯同系物进行了脱氯研究,结果表明,该方法可在 6 小时内实现接近 100% 的脱氯。结果表明,加氢脱氯过程可在温和的温度和大气条件下进行,是解决现实世界中多氯联苯污染问题的潜在办法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The catalytic hydro-dechlorination of 2, 4, 4' trichlorobiphenyl at mild temperatures and atmospheric pressure.

Polychlorinated biphenyls (PCBs), including all 209 congeners, are designated as persistent organic pollutants (POPs) due to their high toxicity and bioaccumulation in human bodies and the ecosystem. The need for PCB remediation still remains long after their production ban. In this study, a catalytic hydro-dechlorination (HDC) method was employed to dechlorinate 2,4,4'-trichlorobiphenyl (PCB 28), a congener found ubiquitously in multiple environmental media. The HDC of PCB 28 was experimentally studied at mild temperatures viz. ~20, 50, and ~77°C and atmospheric pressure. Et3N (triethylamine) was added as a co-catalyst. The dechlorination rates increased with temperature as well as Et3N dosage, and the HDC pathway was hypothesized based on the product and intermediates observed. The less chlorinated intermediates suggested that the position of the chlorine strongly impacted HDC rates, and the preference of HDC at para positions can be orders of magnitudes higher than the ortho. The activation energy was estimated in the range of 12.4-13.9 kJ/mole, indicating a diffusion-controlled HDC system.Implications: The remediation need for polychlorinated biphenyls (PCBs) still remains long after their production ban around the world. The development of low-cost methods is highly desirable, especially for developing countries, in response to the Stockholm Convention. In this study, the dechorination of a ubiquitously present PCB congener was studied using a catalytic hydro-dechlorination (HDC) method in low temperatures up to ~77°C and was able to achieve near 100% dechlorination in 6 hr. Results indicated that the HDC process can be performed under mild temperatures and atmospheric conditions and can be a potential solution to real world PCB contamination issues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信