越多越快:为什么生物搜索中种群数量很重要》(Why Population Size Matters in Biological Search.

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Journal of Computational Biology Pub Date : 2024-05-01 Epub Date: 2024-05-16 DOI:10.1089/cmb.2023.0296
Jannatul Ferdous, George Matthew Fricke, Melanie E Moses
{"title":"越多越快:为什么生物搜索中种群数量很重要》(Why Population Size Matters in Biological Search.","authors":"Jannatul Ferdous, George Matthew Fricke, Melanie E Moses","doi":"10.1089/cmb.2023.0296","DOIUrl":null,"url":null,"abstract":"<p><p>\n <b>Many biological scenarios have multiple cooperating searchers, and the timing of the initial first contact between any one of those searchers and its target is critically important. However, we are unaware of biological models that predict how long it takes for the first of many searchers to discover a target. We present a novel mathematical model that predicts initial first contact times between searchers and targets distributed at random in a volume. We compare this model with the extreme first passage time approach in physics that assumes an infinite number of searchers all initially positioned at the same location. We explore how the number of searchers, the distribution of searchers and targets, and the initial distances between searchers and targets affect initial first contact times. Given a constant density of uniformly distributed searchers and targets, the initial first contact time decreases linearly with both search volume and the number of searchers. However, given only a single target and searchers placed at the same starting location, the relationship between the initial first contact time and the number of searchers shifts from a linear decrease to a logarithmic decrease as the number of searchers grows very large. More generally, we show that initial first contact times can be dramatically faster than the average first contact times and that the initial first contact times decrease with the number of searchers, while the average search times are independent of the number of searchers. We suggest that this is an underappreciated phenomenon in biology and other collective search problems.</b>\n </p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"429-444"},"PeriodicalIF":1.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"More Is Faster: Why Population Size Matters in Biological Search.\",\"authors\":\"Jannatul Ferdous, George Matthew Fricke, Melanie E Moses\",\"doi\":\"10.1089/cmb.2023.0296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>\\n <b>Many biological scenarios have multiple cooperating searchers, and the timing of the initial first contact between any one of those searchers and its target is critically important. However, we are unaware of biological models that predict how long it takes for the first of many searchers to discover a target. We present a novel mathematical model that predicts initial first contact times between searchers and targets distributed at random in a volume. We compare this model with the extreme first passage time approach in physics that assumes an infinite number of searchers all initially positioned at the same location. We explore how the number of searchers, the distribution of searchers and targets, and the initial distances between searchers and targets affect initial first contact times. Given a constant density of uniformly distributed searchers and targets, the initial first contact time decreases linearly with both search volume and the number of searchers. However, given only a single target and searchers placed at the same starting location, the relationship between the initial first contact time and the number of searchers shifts from a linear decrease to a logarithmic decrease as the number of searchers grows very large. More generally, we show that initial first contact times can be dramatically faster than the average first contact times and that the initial first contact times decrease with the number of searchers, while the average search times are independent of the number of searchers. We suggest that this is an underappreciated phenomenon in biology and other collective search problems.</b>\\n </p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\" \",\"pages\":\"429-444\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2023.0296\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0296","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

许多生物场景都有多个合作搜索者,其中任何一个搜索者与其目标之间最初的首次接触时间都至关重要。然而,我们还不知道有什么生物模型可以预测众多搜索者中的第一个发现目标需要多长时间。我们提出了一个新颖的数学模型,它可以预测搜索者与随机分布在一个体积中的目标之间的初始首次接触时间。我们将该模型与物理学中的极端首次通过时间方法进行了比较,后者假定有无限多的搜索者最初都位于同一位置。我们探讨了搜索者的数量、搜索者和目标的分布以及搜索者和目标之间的初始距离如何影响初始首次接触时间。在搜索者和目标均匀分布的密度不变的情况下,初始首次接触时间随搜索量和搜索者数量的增加而线性减少。然而,如果只有一个目标,且搜索者位于同一起始位置,那么随着搜索者数量的增加,初始首次接触时间与搜索者数量之间的关系就会从线性下降转变为对数下降。更广泛地说,我们发现初始首次接触时间可能比平均首次接触时间快得多,而且初始首次接触时间随搜索者数量的增加而减少,而平均搜索时间则与搜索者数量无关。我们认为,这是生物学和其他集体搜索问题中一个未被充分重视的现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
More Is Faster: Why Population Size Matters in Biological Search.

Many biological scenarios have multiple cooperating searchers, and the timing of the initial first contact between any one of those searchers and its target is critically important. However, we are unaware of biological models that predict how long it takes for the first of many searchers to discover a target. We present a novel mathematical model that predicts initial first contact times between searchers and targets distributed at random in a volume. We compare this model with the extreme first passage time approach in physics that assumes an infinite number of searchers all initially positioned at the same location. We explore how the number of searchers, the distribution of searchers and targets, and the initial distances between searchers and targets affect initial first contact times. Given a constant density of uniformly distributed searchers and targets, the initial first contact time decreases linearly with both search volume and the number of searchers. However, given only a single target and searchers placed at the same starting location, the relationship between the initial first contact time and the number of searchers shifts from a linear decrease to a logarithmic decrease as the number of searchers grows very large. More generally, we show that initial first contact times can be dramatically faster than the average first contact times and that the initial first contact times decrease with the number of searchers, while the average search times are independent of the number of searchers. We suggest that this is an underappreciated phenomenon in biology and other collective search problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信