Ola Friman, Navid Soltani, Marcus Lind, Pia Zetterqvist, Anca Balintescu, Anders Perner, Anders Oldner, Olav Rooyackers, Johan Mårtensson
{"title":"对接受血管加压疗法的成年重症患者进行皮下持续葡萄糖监测。","authors":"Ola Friman, Navid Soltani, Marcus Lind, Pia Zetterqvist, Anca Balintescu, Anders Perner, Anders Oldner, Olav Rooyackers, Johan Mårtensson","doi":"10.1089/dia.2024.0035","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Subcutaneous continuous glucose monitoring (CGM) may facilitate glucose control in the ICU. We aimed to assess the accuracy of CGM (Dexcom G6) against arterial blood glucose (ABG) in adult critically ill patients receiving intravenous insulin infusion and vasopressor therapy. We also aimed to assess feasibility and tolerability of CGM in this setting. <b><i>Methods:</i></b> We included ICU patients receiving mechanical ventilation, insulin, and vasopressor therapy. Numerical accuracy was assessed by the mean absolute relative difference (MARD), overall, across arterial glucose strata, over different noradrenaline equivalent infusion rates, and over time since CGM start. MARD <14% was considered acceptable. Clinical accuracy was assessed using Clarke Error Grid (CEG) analysis. Feasibility outcome included number and duration of interrupted sensor readings due to signal loss. Tolerability outcome included skin reactions related to sensor insertion or sensor adhesives. <b><i>Results:</i></b> We obtained 2946 paired samples from 40 patients (18 with type 2 diabetes) receiving a median (IQR) maximum noradrenaline equivalent infusion rate of 0.18 (0.08-0.33) µg/kg/min during CGM. Overall, MARD was 12.7% (95% CI 10.7-15.3), and 99.8% of CGM readings were within CEG zones A and B. MARD values ≥14% were observed when ABG was outside target range (6-10 mmol/L [108-180 mg/dL]) and with noradrenaline equivalent infusion rates above 0.10 µg/kg/min. Accuracy improved with time after CGM start, reaching MARD values <14% after 36 h. We observed four episodes of interrupted sensor readings due to signal loss, ranging from 5 to 20 min. We observed no skin reaction related to sensor insertion or sensor adhesives. <b><i>Conclusions:</i></b> In our ICU cohort of patients receiving vasopressor infusion, subcutaneous CGM demonstrated acceptable overall numerical and clinical accuracy. However, suboptimal accuracy may occur outside glucose ranges of 6-10 mmol/L (108-180 mg/dL), during higher dose vasopressor infusion, and during the first 36 h after CGM start.</p>","PeriodicalId":11159,"journal":{"name":"Diabetes technology & therapeutics","volume":" ","pages":"763-772"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of Subcutaneous Continuous Glucose Monitoring in Adult Critically Ill Patients Receiving Vasopressor Therapy.\",\"authors\":\"Ola Friman, Navid Soltani, Marcus Lind, Pia Zetterqvist, Anca Balintescu, Anders Perner, Anders Oldner, Olav Rooyackers, Johan Mårtensson\",\"doi\":\"10.1089/dia.2024.0035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Background:</i></b> Subcutaneous continuous glucose monitoring (CGM) may facilitate glucose control in the ICU. We aimed to assess the accuracy of CGM (Dexcom G6) against arterial blood glucose (ABG) in adult critically ill patients receiving intravenous insulin infusion and vasopressor therapy. We also aimed to assess feasibility and tolerability of CGM in this setting. <b><i>Methods:</i></b> We included ICU patients receiving mechanical ventilation, insulin, and vasopressor therapy. Numerical accuracy was assessed by the mean absolute relative difference (MARD), overall, across arterial glucose strata, over different noradrenaline equivalent infusion rates, and over time since CGM start. MARD <14% was considered acceptable. Clinical accuracy was assessed using Clarke Error Grid (CEG) analysis. Feasibility outcome included number and duration of interrupted sensor readings due to signal loss. Tolerability outcome included skin reactions related to sensor insertion or sensor adhesives. <b><i>Results:</i></b> We obtained 2946 paired samples from 40 patients (18 with type 2 diabetes) receiving a median (IQR) maximum noradrenaline equivalent infusion rate of 0.18 (0.08-0.33) µg/kg/min during CGM. Overall, MARD was 12.7% (95% CI 10.7-15.3), and 99.8% of CGM readings were within CEG zones A and B. MARD values ≥14% were observed when ABG was outside target range (6-10 mmol/L [108-180 mg/dL]) and with noradrenaline equivalent infusion rates above 0.10 µg/kg/min. Accuracy improved with time after CGM start, reaching MARD values <14% after 36 h. We observed four episodes of interrupted sensor readings due to signal loss, ranging from 5 to 20 min. We observed no skin reaction related to sensor insertion or sensor adhesives. <b><i>Conclusions:</i></b> In our ICU cohort of patients receiving vasopressor infusion, subcutaneous CGM demonstrated acceptable overall numerical and clinical accuracy. However, suboptimal accuracy may occur outside glucose ranges of 6-10 mmol/L (108-180 mg/dL), during higher dose vasopressor infusion, and during the first 36 h after CGM start.</p>\",\"PeriodicalId\":11159,\"journal\":{\"name\":\"Diabetes technology & therapeutics\",\"volume\":\" \",\"pages\":\"763-772\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes technology & therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/dia.2024.0035\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes technology & therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/dia.2024.0035","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Performance of Subcutaneous Continuous Glucose Monitoring in Adult Critically Ill Patients Receiving Vasopressor Therapy.
Background: Subcutaneous continuous glucose monitoring (CGM) may facilitate glucose control in the ICU. We aimed to assess the accuracy of CGM (Dexcom G6) against arterial blood glucose (ABG) in adult critically ill patients receiving intravenous insulin infusion and vasopressor therapy. We also aimed to assess feasibility and tolerability of CGM in this setting. Methods: We included ICU patients receiving mechanical ventilation, insulin, and vasopressor therapy. Numerical accuracy was assessed by the mean absolute relative difference (MARD), overall, across arterial glucose strata, over different noradrenaline equivalent infusion rates, and over time since CGM start. MARD <14% was considered acceptable. Clinical accuracy was assessed using Clarke Error Grid (CEG) analysis. Feasibility outcome included number and duration of interrupted sensor readings due to signal loss. Tolerability outcome included skin reactions related to sensor insertion or sensor adhesives. Results: We obtained 2946 paired samples from 40 patients (18 with type 2 diabetes) receiving a median (IQR) maximum noradrenaline equivalent infusion rate of 0.18 (0.08-0.33) µg/kg/min during CGM. Overall, MARD was 12.7% (95% CI 10.7-15.3), and 99.8% of CGM readings were within CEG zones A and B. MARD values ≥14% were observed when ABG was outside target range (6-10 mmol/L [108-180 mg/dL]) and with noradrenaline equivalent infusion rates above 0.10 µg/kg/min. Accuracy improved with time after CGM start, reaching MARD values <14% after 36 h. We observed four episodes of interrupted sensor readings due to signal loss, ranging from 5 to 20 min. We observed no skin reaction related to sensor insertion or sensor adhesives. Conclusions: In our ICU cohort of patients receiving vasopressor infusion, subcutaneous CGM demonstrated acceptable overall numerical and clinical accuracy. However, suboptimal accuracy may occur outside glucose ranges of 6-10 mmol/L (108-180 mg/dL), during higher dose vasopressor infusion, and during the first 36 h after CGM start.
期刊介绍:
Diabetes Technology & Therapeutics is the only peer-reviewed journal providing healthcare professionals with information on new devices, drugs, drug delivery systems, and software for managing patients with diabetes. This leading international journal delivers practical information and comprehensive coverage of cutting-edge technologies and therapeutics in the field, and each issue highlights new pharmacological and device developments to optimize patient care.