{"title":"黄酮类化合物对多药和毒素挤压蛋白 1 功能的抑制作用:食物/草药-药物相互作用和药物诱发肾损伤的影响。","authors":"Xiaoyan Duan, Wanting Bai, Jiahuan Hu, Jinjin Wu, Huixin Tan, Fenghe Wang, Xuli Lang, Baolian Wang, Jinping Hu","doi":"10.1002/jat.4628","DOIUrl":null,"url":null,"abstract":"<p>Multidrug and toxin extrusion protein 1 (MATE1), an efflux transporter mainly expressed in renal proximal tubules, mediates the renal secretion of organic cationic drugs. The inhibition of MATE1 will impair the excretion of drugs into the tubular lumen, leading to the accumulation of nephrotoxic drugs in the kidney and consequently potentiating nephrotoxicity. Screening and identifying potent MATE1 inhibitors can predict or minimize the risk of drug-induced kidney injury. Flavonoids, a group of polyphenols commonly found in foodstuffs and herbal products, have been reported to cause transporter-mediated food/herb–drug interactions. Our objective was to investigate the inhibitory effects of flavonoids on MATE1 in vitro and in vivo and to assess the effects of flavonoids on cisplatin-induced kidney injury. Thirteen flavonoids exhibited significant transport activity inhibition (>50%) on MATE1 in MATE1-MDCK cells. Among them, the six strongest flavonoid inhibitors, including irisflorentin, silymarin, isosilybin, sinensetin, tangeretin, and nobiletin, markedly increased cisplatin cytotoxicity in these cells. In cisplatin-induced in vivo renal injury models, irisflorentin, isosilybin, and sinensetin also increased serum creatinine and blood urea nitrogen levels to different degrees, especially irisflorentin, which exhibited the most potent nephrotoxicity with cisplatin. The pharmacophore model indicated that the hydrogen bond acceptors at the 3, 5, and 7 positions may play a critical role in the inhibitory effect of flavonoids on MATE1. Our findings provide helpful information for predicting the potential risks of flavonoid-containing food/herb–drug interactions and avoiding the exacerbation of drug-induced kidney injury via MATE1 mediation.</p>","PeriodicalId":15242,"journal":{"name":"Journal of Applied Toxicology","volume":"44 9","pages":"1388-1402"},"PeriodicalIF":2.7000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibitory effect of flavonoids on multidrug and toxin extrusion protein 1 function: Implications for food/herb–drug interaction and drug-induced kidney injury\",\"authors\":\"Xiaoyan Duan, Wanting Bai, Jiahuan Hu, Jinjin Wu, Huixin Tan, Fenghe Wang, Xuli Lang, Baolian Wang, Jinping Hu\",\"doi\":\"10.1002/jat.4628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multidrug and toxin extrusion protein 1 (MATE1), an efflux transporter mainly expressed in renal proximal tubules, mediates the renal secretion of organic cationic drugs. The inhibition of MATE1 will impair the excretion of drugs into the tubular lumen, leading to the accumulation of nephrotoxic drugs in the kidney and consequently potentiating nephrotoxicity. Screening and identifying potent MATE1 inhibitors can predict or minimize the risk of drug-induced kidney injury. Flavonoids, a group of polyphenols commonly found in foodstuffs and herbal products, have been reported to cause transporter-mediated food/herb–drug interactions. Our objective was to investigate the inhibitory effects of flavonoids on MATE1 in vitro and in vivo and to assess the effects of flavonoids on cisplatin-induced kidney injury. Thirteen flavonoids exhibited significant transport activity inhibition (>50%) on MATE1 in MATE1-MDCK cells. Among them, the six strongest flavonoid inhibitors, including irisflorentin, silymarin, isosilybin, sinensetin, tangeretin, and nobiletin, markedly increased cisplatin cytotoxicity in these cells. In cisplatin-induced in vivo renal injury models, irisflorentin, isosilybin, and sinensetin also increased serum creatinine and blood urea nitrogen levels to different degrees, especially irisflorentin, which exhibited the most potent nephrotoxicity with cisplatin. The pharmacophore model indicated that the hydrogen bond acceptors at the 3, 5, and 7 positions may play a critical role in the inhibitory effect of flavonoids on MATE1. Our findings provide helpful information for predicting the potential risks of flavonoid-containing food/herb–drug interactions and avoiding the exacerbation of drug-induced kidney injury via MATE1 mediation.</p>\",\"PeriodicalId\":15242,\"journal\":{\"name\":\"Journal of Applied Toxicology\",\"volume\":\"44 9\",\"pages\":\"1388-1402\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jat.4628\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jat.4628","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Inhibitory effect of flavonoids on multidrug and toxin extrusion protein 1 function: Implications for food/herb–drug interaction and drug-induced kidney injury
Multidrug and toxin extrusion protein 1 (MATE1), an efflux transporter mainly expressed in renal proximal tubules, mediates the renal secretion of organic cationic drugs. The inhibition of MATE1 will impair the excretion of drugs into the tubular lumen, leading to the accumulation of nephrotoxic drugs in the kidney and consequently potentiating nephrotoxicity. Screening and identifying potent MATE1 inhibitors can predict or minimize the risk of drug-induced kidney injury. Flavonoids, a group of polyphenols commonly found in foodstuffs and herbal products, have been reported to cause transporter-mediated food/herb–drug interactions. Our objective was to investigate the inhibitory effects of flavonoids on MATE1 in vitro and in vivo and to assess the effects of flavonoids on cisplatin-induced kidney injury. Thirteen flavonoids exhibited significant transport activity inhibition (>50%) on MATE1 in MATE1-MDCK cells. Among them, the six strongest flavonoid inhibitors, including irisflorentin, silymarin, isosilybin, sinensetin, tangeretin, and nobiletin, markedly increased cisplatin cytotoxicity in these cells. In cisplatin-induced in vivo renal injury models, irisflorentin, isosilybin, and sinensetin also increased serum creatinine and blood urea nitrogen levels to different degrees, especially irisflorentin, which exhibited the most potent nephrotoxicity with cisplatin. The pharmacophore model indicated that the hydrogen bond acceptors at the 3, 5, and 7 positions may play a critical role in the inhibitory effect of flavonoids on MATE1. Our findings provide helpful information for predicting the potential risks of flavonoid-containing food/herb–drug interactions and avoiding the exacerbation of drug-induced kidney injury via MATE1 mediation.
期刊介绍:
Journal of Applied Toxicology publishes peer-reviewed original reviews and hypothesis-driven research articles on mechanistic, fundamental and applied research relating to the toxicity of drugs and chemicals at the molecular, cellular, tissue, target organ and whole body level in vivo (by all relevant routes of exposure) and in vitro / ex vivo. All aspects of toxicology are covered (including but not limited to nanotoxicology, genomics and proteomics, teratogenesis, carcinogenesis, mutagenesis, reproductive and endocrine toxicology, toxicopathology, target organ toxicity, systems toxicity (eg immunotoxicity), neurobehavioral toxicology, mechanistic studies, biochemical and molecular toxicology, novel biomarkers, pharmacokinetics/PBPK, risk assessment and environmental health studies) and emphasis is given to papers of clear application to human health, and/or advance mechanistic understanding and/or provide significant contributions and impact to their field.