Yafei Xu, Weimiao Kong, Simin Zhao, Dan Xiong, Yejun Wang
{"title":"辣椒素通过SERPINB2抑制EMT和ERK信号转导,增强顺铂诱导的鼻咽癌抗转移能力","authors":"Yafei Xu, Weimiao Kong, Simin Zhao, Dan Xiong, Yejun Wang","doi":"10.1093/carcin/bgae032","DOIUrl":null,"url":null,"abstract":"<p><p>Cisplatin (DDP)-based combined chemotherapy or concurrent chemoradiotherapy is the mainstay treatment for advanced-stage nasopharyngeal carcinoma (NPC), but needs improvement due to its severe side effects. Capsaicin (CAP) can enhance the anti-tumor activity of cytotoxic drugs. The aim of this study was to investigate the anti-metastasis activity of CAP in combination with DDP in NPC. Herein, CAP and DDP showed synergistic cytotoxic effects on NPC cells. CAP alone and DDP alone inhibited NPC migration and invasion in vitro and in vivo, and the combination of CAP and DDP had the greatest effect. Moreover, CAP upregulated the mRNA and protein expressions of serpin family B member 2 (SERPINB2). Further results showed that both SERPINB2 mRNA and protein expressions were downregulated in NPC cell lines and tissues and SERPINB2 overexpression inhibited NPC migration and invasion in vitro and in vivo, while silencing SERPINB2 acted oppositely. In addition, SERPINB2 was abnormally expressed in head and neck squamous cell carcinoma and other multiple cancers, and downregulation of SERPINB2 predicted poor prognosis in head and neck squamous cell carcinoma according to the Cancer Genome Atlas database. We further found that SERPINB2 overexpression inhibited epithelial-mesenchymal transition (EMT) and the phosphorylated extracellular signal-regulated kinase (p-ERK), and the inhibitory effect was enhanced by CAP and DDP. Altogether, our results suggest that the combined inhibition of CAP and DDP on NPC metastasis may be related to the inhibition of epithelial-mesenchymal transition and ERK signals mediated by SERPINB2, and CAP may help to improve the efficacy of DDP in the treatment of NPC and develop new therapeutic approaches.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":"556-568"},"PeriodicalIF":3.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capsaicin enhances cisplatin-induced anti-metastasis of nasopharyngeal carcinoma by inhibiting EMT and ERK signaling via serpin family B member 2.\",\"authors\":\"Yafei Xu, Weimiao Kong, Simin Zhao, Dan Xiong, Yejun Wang\",\"doi\":\"10.1093/carcin/bgae032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cisplatin (DDP)-based combined chemotherapy or concurrent chemoradiotherapy is the mainstay treatment for advanced-stage nasopharyngeal carcinoma (NPC), but needs improvement due to its severe side effects. Capsaicin (CAP) can enhance the anti-tumor activity of cytotoxic drugs. The aim of this study was to investigate the anti-metastasis activity of CAP in combination with DDP in NPC. Herein, CAP and DDP showed synergistic cytotoxic effects on NPC cells. CAP alone and DDP alone inhibited NPC migration and invasion in vitro and in vivo, and the combination of CAP and DDP had the greatest effect. Moreover, CAP upregulated the mRNA and protein expressions of serpin family B member 2 (SERPINB2). Further results showed that both SERPINB2 mRNA and protein expressions were downregulated in NPC cell lines and tissues and SERPINB2 overexpression inhibited NPC migration and invasion in vitro and in vivo, while silencing SERPINB2 acted oppositely. In addition, SERPINB2 was abnormally expressed in head and neck squamous cell carcinoma and other multiple cancers, and downregulation of SERPINB2 predicted poor prognosis in head and neck squamous cell carcinoma according to the Cancer Genome Atlas database. We further found that SERPINB2 overexpression inhibited epithelial-mesenchymal transition (EMT) and the phosphorylated extracellular signal-regulated kinase (p-ERK), and the inhibitory effect was enhanced by CAP and DDP. Altogether, our results suggest that the combined inhibition of CAP and DDP on NPC metastasis may be related to the inhibition of epithelial-mesenchymal transition and ERK signals mediated by SERPINB2, and CAP may help to improve the efficacy of DDP in the treatment of NPC and develop new therapeutic approaches.</p>\",\"PeriodicalId\":9446,\"journal\":{\"name\":\"Carcinogenesis\",\"volume\":\" \",\"pages\":\"556-568\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carcinogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/carcin/bgae032\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/carcin/bgae032","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Capsaicin enhances cisplatin-induced anti-metastasis of nasopharyngeal carcinoma by inhibiting EMT and ERK signaling via serpin family B member 2.
Cisplatin (DDP)-based combined chemotherapy or concurrent chemoradiotherapy is the mainstay treatment for advanced-stage nasopharyngeal carcinoma (NPC), but needs improvement due to its severe side effects. Capsaicin (CAP) can enhance the anti-tumor activity of cytotoxic drugs. The aim of this study was to investigate the anti-metastasis activity of CAP in combination with DDP in NPC. Herein, CAP and DDP showed synergistic cytotoxic effects on NPC cells. CAP alone and DDP alone inhibited NPC migration and invasion in vitro and in vivo, and the combination of CAP and DDP had the greatest effect. Moreover, CAP upregulated the mRNA and protein expressions of serpin family B member 2 (SERPINB2). Further results showed that both SERPINB2 mRNA and protein expressions were downregulated in NPC cell lines and tissues and SERPINB2 overexpression inhibited NPC migration and invasion in vitro and in vivo, while silencing SERPINB2 acted oppositely. In addition, SERPINB2 was abnormally expressed in head and neck squamous cell carcinoma and other multiple cancers, and downregulation of SERPINB2 predicted poor prognosis in head and neck squamous cell carcinoma according to the Cancer Genome Atlas database. We further found that SERPINB2 overexpression inhibited epithelial-mesenchymal transition (EMT) and the phosphorylated extracellular signal-regulated kinase (p-ERK), and the inhibitory effect was enhanced by CAP and DDP. Altogether, our results suggest that the combined inhibition of CAP and DDP on NPC metastasis may be related to the inhibition of epithelial-mesenchymal transition and ERK signals mediated by SERPINB2, and CAP may help to improve the efficacy of DDP in the treatment of NPC and develop new therapeutic approaches.
期刊介绍:
Carcinogenesis: Integrative Cancer Research is a multi-disciplinary journal that brings together all the varied aspects of research that will ultimately lead to the prevention of cancer in man. The journal publishes papers that warrant prompt publication in the areas of Biology, Genetics and Epigenetics (including the processes of promotion, progression, signal transduction, apoptosis, genomic instability, growth factors, cell and molecular biology, mutation, DNA repair, genetics, etc.), Cancer Biomarkers and Molecular Epidemiology (including genetic predisposition to cancer, and epidemiology), Inflammation, Microenvironment and Prevention (including molecular dosimetry, chemoprevention, nutrition and cancer, etc.), and Carcinogenesis (including oncogenes and tumor suppressor genes in carcinogenesis, therapy resistance of solid tumors, cancer mouse models, apoptosis and senescence, novel therapeutic targets and cancer drugs).