Moritz Nies, Keita Watanabe, Iwanari Kawamura, Bingyan J Wang, Jeffrey Litt, Roman Turovskiy, David J Danitz, Darrin R Uecker, Keith E Linder, Yasuhiro Maejima, Tetsuo Sasano, Vivek Y Reddy, Jacob S Koruth
{"title":"使用纳秒脉冲电场消融心肌:可行性、安全性和耐久性的临床前评估","authors":"Moritz Nies, Keita Watanabe, Iwanari Kawamura, Bingyan J Wang, Jeffrey Litt, Roman Turovskiy, David J Danitz, Darrin R Uecker, Keith E Linder, Yasuhiro Maejima, Tetsuo Sasano, Vivek Y Reddy, Jacob S Koruth","doi":"10.1161/CIRCEP.124.012854","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Unlike conventional microsecond pulsed electrical fields that primarily target the cell membranes, nanosecond pulses are thought to primarily electroporate intracellular organelles. We conducted a comprehensive preclinical assessment of catheter-based endocardial nanosecond pulsed field ablation in swine.</p><p><strong>Methods: </strong>A novel endocardial nanosecond pulsed field ablation system was evaluated in a total of 25 swine. Using either a low-dose (5-second duration) or high-dose (15-second duration) strategy, thoracic veins and discrete atrial and ventricular sites were ablated. Predetermined survival periods were <1 (n=1), ≈2 (n=7), ≈7 (n=6), 14 (n=2), or ≈28 (n=9) days, and venous isolation was assessed before euthanasia. Safety assessments included evaluation of esophageal effects, phrenic nerve function, and changes in venous caliber. All tissues were subject to careful gross pathological and histopathologic examination.</p><p><strong>Results: </strong>All (100%) veins (13 low-dose, 34 high-dose) were acutely isolated, and all reassessed veins (6 low-dose, 15 high-dose) were durably isolated. All examined vein lesions (10 low-dose, 22 high-dose) were transmural. Vein diameters (n=15) were not significantly changed. Of the animals assessed for phrenic palsy (n=9), 3 (33%) demonstrated only transient palsy. There were no differences between dosing strategies. Thirteen mitral isthmus lesions were analyzed, and all 13 (100%) were transmural (depth, 6.4±0.4 mm). Ventricular lesions were 14.7±4.5 mm wide and 7.1±1.3 mm deep, with high-dose lesions deeper than low-dose (7.9±1.2 versus 6.2±0.8 mm; <i>P</i>=0.007). The esophagus revealed nontransmural adventitial surface lesions in 5 of 5 (100%) animals euthanized early (2 days) post-ablation. In the 10 animals euthanized later (14-28 days), all animals demonstrated significant esophageal healing-8 with complete resolution, and 2 with only trace fibrosis.</p><p><strong>Conclusions: </strong>A novel, endocardial nanosecond pulsed field ablation system provides acute and durable venous isolation and linear lesions. Transient phrenic injury and nontransmural esophageal lesions can occur with worst-case assessments suggesting limits to pulsed field ablation tissue selectivity and the need for dedicated assessments during clinical studies.</p>","PeriodicalId":10319,"journal":{"name":"Circulation. Arrhythmia and electrophysiology","volume":" ","pages":"e012854"},"PeriodicalIF":9.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254255/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ablating Myocardium Using Nanosecond Pulsed Electric Fields: Preclinical Assessment of Feasibility, Safety, and Durability.\",\"authors\":\"Moritz Nies, Keita Watanabe, Iwanari Kawamura, Bingyan J Wang, Jeffrey Litt, Roman Turovskiy, David J Danitz, Darrin R Uecker, Keith E Linder, Yasuhiro Maejima, Tetsuo Sasano, Vivek Y Reddy, Jacob S Koruth\",\"doi\":\"10.1161/CIRCEP.124.012854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Unlike conventional microsecond pulsed electrical fields that primarily target the cell membranes, nanosecond pulses are thought to primarily electroporate intracellular organelles. We conducted a comprehensive preclinical assessment of catheter-based endocardial nanosecond pulsed field ablation in swine.</p><p><strong>Methods: </strong>A novel endocardial nanosecond pulsed field ablation system was evaluated in a total of 25 swine. Using either a low-dose (5-second duration) or high-dose (15-second duration) strategy, thoracic veins and discrete atrial and ventricular sites were ablated. Predetermined survival periods were <1 (n=1), ≈2 (n=7), ≈7 (n=6), 14 (n=2), or ≈28 (n=9) days, and venous isolation was assessed before euthanasia. Safety assessments included evaluation of esophageal effects, phrenic nerve function, and changes in venous caliber. All tissues were subject to careful gross pathological and histopathologic examination.</p><p><strong>Results: </strong>All (100%) veins (13 low-dose, 34 high-dose) were acutely isolated, and all reassessed veins (6 low-dose, 15 high-dose) were durably isolated. All examined vein lesions (10 low-dose, 22 high-dose) were transmural. Vein diameters (n=15) were not significantly changed. Of the animals assessed for phrenic palsy (n=9), 3 (33%) demonstrated only transient palsy. There were no differences between dosing strategies. Thirteen mitral isthmus lesions were analyzed, and all 13 (100%) were transmural (depth, 6.4±0.4 mm). Ventricular lesions were 14.7±4.5 mm wide and 7.1±1.3 mm deep, with high-dose lesions deeper than low-dose (7.9±1.2 versus 6.2±0.8 mm; <i>P</i>=0.007). The esophagus revealed nontransmural adventitial surface lesions in 5 of 5 (100%) animals euthanized early (2 days) post-ablation. In the 10 animals euthanized later (14-28 days), all animals demonstrated significant esophageal healing-8 with complete resolution, and 2 with only trace fibrosis.</p><p><strong>Conclusions: </strong>A novel, endocardial nanosecond pulsed field ablation system provides acute and durable venous isolation and linear lesions. Transient phrenic injury and nontransmural esophageal lesions can occur with worst-case assessments suggesting limits to pulsed field ablation tissue selectivity and the need for dedicated assessments during clinical studies.</p>\",\"PeriodicalId\":10319,\"journal\":{\"name\":\"Circulation. Arrhythmia and electrophysiology\",\"volume\":\" \",\"pages\":\"e012854\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254255/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation. Arrhythmia and electrophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCEP.124.012854\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation. Arrhythmia and electrophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCEP.124.012854","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Ablating Myocardium Using Nanosecond Pulsed Electric Fields: Preclinical Assessment of Feasibility, Safety, and Durability.
Background: Unlike conventional microsecond pulsed electrical fields that primarily target the cell membranes, nanosecond pulses are thought to primarily electroporate intracellular organelles. We conducted a comprehensive preclinical assessment of catheter-based endocardial nanosecond pulsed field ablation in swine.
Methods: A novel endocardial nanosecond pulsed field ablation system was evaluated in a total of 25 swine. Using either a low-dose (5-second duration) or high-dose (15-second duration) strategy, thoracic veins and discrete atrial and ventricular sites were ablated. Predetermined survival periods were <1 (n=1), ≈2 (n=7), ≈7 (n=6), 14 (n=2), or ≈28 (n=9) days, and venous isolation was assessed before euthanasia. Safety assessments included evaluation of esophageal effects, phrenic nerve function, and changes in venous caliber. All tissues were subject to careful gross pathological and histopathologic examination.
Results: All (100%) veins (13 low-dose, 34 high-dose) were acutely isolated, and all reassessed veins (6 low-dose, 15 high-dose) were durably isolated. All examined vein lesions (10 low-dose, 22 high-dose) were transmural. Vein diameters (n=15) were not significantly changed. Of the animals assessed for phrenic palsy (n=9), 3 (33%) demonstrated only transient palsy. There were no differences between dosing strategies. Thirteen mitral isthmus lesions were analyzed, and all 13 (100%) were transmural (depth, 6.4±0.4 mm). Ventricular lesions were 14.7±4.5 mm wide and 7.1±1.3 mm deep, with high-dose lesions deeper than low-dose (7.9±1.2 versus 6.2±0.8 mm; P=0.007). The esophagus revealed nontransmural adventitial surface lesions in 5 of 5 (100%) animals euthanized early (2 days) post-ablation. In the 10 animals euthanized later (14-28 days), all animals demonstrated significant esophageal healing-8 with complete resolution, and 2 with only trace fibrosis.
Conclusions: A novel, endocardial nanosecond pulsed field ablation system provides acute and durable venous isolation and linear lesions. Transient phrenic injury and nontransmural esophageal lesions can occur with worst-case assessments suggesting limits to pulsed field ablation tissue selectivity and the need for dedicated assessments during clinical studies.
期刊介绍:
Circulation: Arrhythmia and Electrophysiology is a journal dedicated to the study and application of clinical cardiac electrophysiology. It covers a wide range of topics including the diagnosis and treatment of cardiac arrhythmias, as well as research in this field. The journal accepts various types of studies, including observational research, clinical trials, epidemiological studies, and advancements in translational research.