{"title":"用于平流扩散方程保守公式的高阶拉格朗日-加勒金方法","authors":"Rodolfo Bermejo, Manuel Colera","doi":"10.1093/imanum/drae018","DOIUrl":null,"url":null,"abstract":"We introduce in this paper the numerical analysis of high order both in time and space Lagrange-Galerkin methods for the conservative formulation of the advection-diffusion equation. As time discretization scheme we consider the Backward Differentiation Formulas up to order $q=5$. The development and analysis of the methods are performed in the framework of time evolving finite elements presented in C. M. Elliot and T. Ranner, IMA Journal of Numerical Analysis41, 1696–1845 (2021). The error estimates show through their dependence on the parameters of the equation the existence of different regimes in the behavior of the numerical solution; namely, in the diffusive regime, that is, when the diffusion parameter $\\mu $ is large, the error is $O(h^{k+1}+\\varDelta t^{q})$, whereas in the advective regime, $\\mu \\ll 1$, the convergence is $O(\\min (h^{k},\\frac{h^{k+1} }{\\varDelta t})+\\varDelta t^{q})$. It is worth remarking that the error constant does not have exponential $\\mu ^{-1}$ dependence.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"127 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-order Lagrange-Galerkin methods for the conservative formulation of the advection-diffusion equation\",\"authors\":\"Rodolfo Bermejo, Manuel Colera\",\"doi\":\"10.1093/imanum/drae018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce in this paper the numerical analysis of high order both in time and space Lagrange-Galerkin methods for the conservative formulation of the advection-diffusion equation. As time discretization scheme we consider the Backward Differentiation Formulas up to order $q=5$. The development and analysis of the methods are performed in the framework of time evolving finite elements presented in C. M. Elliot and T. Ranner, IMA Journal of Numerical Analysis41, 1696–1845 (2021). The error estimates show through their dependence on the parameters of the equation the existence of different regimes in the behavior of the numerical solution; namely, in the diffusive regime, that is, when the diffusion parameter $\\\\mu $ is large, the error is $O(h^{k+1}+\\\\varDelta t^{q})$, whereas in the advective regime, $\\\\mu \\\\ll 1$, the convergence is $O(\\\\min (h^{k},\\\\frac{h^{k+1} }{\\\\varDelta t})+\\\\varDelta t^{q})$. It is worth remarking that the error constant does not have exponential $\\\\mu ^{-1}$ dependence.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"127 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drae018\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae018","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了针对平流-扩散方程保守公式的高阶时间和空间拉格朗日-加勒金方法的数值分析。作为时间离散化方案,我们考虑了最高阶数为 $q=5$ 的后向微分公式。方法的开发和分析是在 C. M. Elliot 和 T. Ranner, IMA Journal of Numerical Analysis41, 1696-1845 (2021) 中提出的时间演化有限元框架内进行的。误差估计值通过其对方程参数的依赖性显示出数值解的行为存在不同的体制;即在扩散状态下,即扩散参数 $\mu $ 较大时,误差为 $O(h^{k+1}+\varDelta t^{q})$ ;而在平流状态下,即 $\mu \ll 1$,收敛为 $O(\min(h^{k},\frac{h^{k+1}}{\varDelta t})+\varDelta t^{q})$ 。值得注意的是,误差常数与 $\mu ^{-1}$不呈指数关系。
High-order Lagrange-Galerkin methods for the conservative formulation of the advection-diffusion equation
We introduce in this paper the numerical analysis of high order both in time and space Lagrange-Galerkin methods for the conservative formulation of the advection-diffusion equation. As time discretization scheme we consider the Backward Differentiation Formulas up to order $q=5$. The development and analysis of the methods are performed in the framework of time evolving finite elements presented in C. M. Elliot and T. Ranner, IMA Journal of Numerical Analysis41, 1696–1845 (2021). The error estimates show through their dependence on the parameters of the equation the existence of different regimes in the behavior of the numerical solution; namely, in the diffusive regime, that is, when the diffusion parameter $\mu $ is large, the error is $O(h^{k+1}+\varDelta t^{q})$, whereas in the advective regime, $\mu \ll 1$, the convergence is $O(\min (h^{k},\frac{h^{k+1} }{\varDelta t})+\varDelta t^{q})$. It is worth remarking that the error constant does not have exponential $\mu ^{-1}$ dependence.
期刊介绍:
The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.