用于平流扩散方程保守公式的高阶拉格朗日-加勒金方法

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Rodolfo Bermejo, Manuel Colera
{"title":"用于平流扩散方程保守公式的高阶拉格朗日-加勒金方法","authors":"Rodolfo Bermejo, Manuel Colera","doi":"10.1093/imanum/drae018","DOIUrl":null,"url":null,"abstract":"We introduce in this paper the numerical analysis of high order both in time and space Lagrange-Galerkin methods for the conservative formulation of the advection-diffusion equation. As time discretization scheme we consider the Backward Differentiation Formulas up to order $q=5$. The development and analysis of the methods are performed in the framework of time evolving finite elements presented in C. M. Elliot and T. Ranner, IMA Journal of Numerical Analysis41, 1696–1845 (2021). The error estimates show through their dependence on the parameters of the equation the existence of different regimes in the behavior of the numerical solution; namely, in the diffusive regime, that is, when the diffusion parameter $\\mu $ is large, the error is $O(h^{k+1}+\\varDelta t^{q})$, whereas in the advective regime, $\\mu \\ll 1$, the convergence is $O(\\min (h^{k},\\frac{h^{k+1} }{\\varDelta t})+\\varDelta t^{q})$. It is worth remarking that the error constant does not have exponential $\\mu ^{-1}$ dependence.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-order Lagrange-Galerkin methods for the conservative formulation of the advection-diffusion equation\",\"authors\":\"Rodolfo Bermejo, Manuel Colera\",\"doi\":\"10.1093/imanum/drae018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce in this paper the numerical analysis of high order both in time and space Lagrange-Galerkin methods for the conservative formulation of the advection-diffusion equation. As time discretization scheme we consider the Backward Differentiation Formulas up to order $q=5$. The development and analysis of the methods are performed in the framework of time evolving finite elements presented in C. M. Elliot and T. Ranner, IMA Journal of Numerical Analysis41, 1696–1845 (2021). The error estimates show through their dependence on the parameters of the equation the existence of different regimes in the behavior of the numerical solution; namely, in the diffusive regime, that is, when the diffusion parameter $\\\\mu $ is large, the error is $O(h^{k+1}+\\\\varDelta t^{q})$, whereas in the advective regime, $\\\\mu \\\\ll 1$, the convergence is $O(\\\\min (h^{k},\\\\frac{h^{k+1} }{\\\\varDelta t})+\\\\varDelta t^{q})$. It is worth remarking that the error constant does not have exponential $\\\\mu ^{-1}$ dependence.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drae018\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae018","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了针对平流-扩散方程保守公式的高阶时间和空间拉格朗日-加勒金方法的数值分析。作为时间离散化方案,我们考虑了最高阶数为 $q=5$ 的后向微分公式。方法的开发和分析是在 C. M. Elliot 和 T. Ranner, IMA Journal of Numerical Analysis41, 1696-1845 (2021) 中提出的时间演化有限元框架内进行的。误差估计值通过其对方程参数的依赖性显示出数值解的行为存在不同的体制;即在扩散状态下,即扩散参数 $\mu $ 较大时,误差为 $O(h^{k+1}+\varDelta t^{q})$ ;而在平流状态下,即 $\mu \ll 1$,收敛为 $O(\min(h^{k},\frac{h^{k+1}}{\varDelta t})+\varDelta t^{q})$ 。值得注意的是,误差常数与 $\mu ^{-1}$不呈指数关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-order Lagrange-Galerkin methods for the conservative formulation of the advection-diffusion equation
We introduce in this paper the numerical analysis of high order both in time and space Lagrange-Galerkin methods for the conservative formulation of the advection-diffusion equation. As time discretization scheme we consider the Backward Differentiation Formulas up to order $q=5$. The development and analysis of the methods are performed in the framework of time evolving finite elements presented in C. M. Elliot and T. Ranner, IMA Journal of Numerical Analysis41, 1696–1845 (2021). The error estimates show through their dependence on the parameters of the equation the existence of different regimes in the behavior of the numerical solution; namely, in the diffusive regime, that is, when the diffusion parameter $\mu $ is large, the error is $O(h^{k+1}+\varDelta t^{q})$, whereas in the advective regime, $\mu \ll 1$, the convergence is $O(\min (h^{k},\frac{h^{k+1} }{\varDelta t})+\varDelta t^{q})$. It is worth remarking that the error constant does not have exponential $\mu ^{-1}$ dependence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信