大类中的扭曲凯勒-爱因斯坦度量

IF 3.1 1区 数学 Q1 MATHEMATICS
Tamás Darvas, Kewei Zhang
{"title":"大类中的扭曲凯勒-爱因斯坦度量","authors":"Tamás Darvas,&nbsp;Kewei Zhang","doi":"10.1002/cpa.22206","DOIUrl":null,"url":null,"abstract":"<p>We prove existence of twisted Kähler–Einstein metrics in big cohomology classes, using a divisorial stability condition. In particular, when <span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n <msub>\n <mi>K</mi>\n <mi>X</mi>\n </msub>\n </mrow>\n <annotation>$-K_X$</annotation>\n </semantics></math> is big, we obtain a uniform Yau–Tian–Donaldson (YTD) existence theorem for Kähler–Einstein (KE) metrics. To achieve this, we build up from scratch the theory of Fujita–Odaka type delta invariants in the transcendental big setting, using pluripotential theory. We do not use the K-energy in our arguments, and our techniques provide a simple roadmap to prove YTD existence theorems for KE type metrics, that only needs convexity of the appropriate Ding energy. As an application, we give a simplified proof of Li–Tian–Wang's existence theorem in the log Fano setting.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 12","pages":"4289-4327"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twisted Kähler–Einstein metrics in big classes\",\"authors\":\"Tamás Darvas,&nbsp;Kewei Zhang\",\"doi\":\"10.1002/cpa.22206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove existence of twisted Kähler–Einstein metrics in big cohomology classes, using a divisorial stability condition. In particular, when <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>−</mo>\\n <msub>\\n <mi>K</mi>\\n <mi>X</mi>\\n </msub>\\n </mrow>\\n <annotation>$-K_X$</annotation>\\n </semantics></math> is big, we obtain a uniform Yau–Tian–Donaldson (YTD) existence theorem for Kähler–Einstein (KE) metrics. To achieve this, we build up from scratch the theory of Fujita–Odaka type delta invariants in the transcendental big setting, using pluripotential theory. We do not use the K-energy in our arguments, and our techniques provide a simple roadmap to prove YTD existence theorems for KE type metrics, that only needs convexity of the appropriate Ding energy. As an application, we give a simplified proof of Li–Tian–Wang's existence theorem in the log Fano setting.</p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"77 12\",\"pages\":\"4289-4327\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22206\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22206","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们利用除法稳定性条件证明了大同调类中扭曲凯勒-爱因斯坦度量的存在性。特别是,当大同调时,我们得到了凯勒-爱因斯坦(KE)度量的统一游天-唐纳森(YTD)存在定理。为此,我们利用多势理论,从零开始建立了超越大背景下的藤田-大高(Fujita-Odaka)型三角不变式理论。我们在论证中不使用 K 能,我们的技术为证明 KE 类型度量的 YTD 存在性定理提供了一个简单的路线图,它只需要适当丁能的凸性。作为应用,我们给出了对数法诺环境中李天王存在性定理的简化证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Twisted Kähler–Einstein metrics in big classes

We prove existence of twisted Kähler–Einstein metrics in big cohomology classes, using a divisorial stability condition. In particular, when K X $-K_X$ is big, we obtain a uniform Yau–Tian–Donaldson (YTD) existence theorem for Kähler–Einstein (KE) metrics. To achieve this, we build up from scratch the theory of Fujita–Odaka type delta invariants in the transcendental big setting, using pluripotential theory. We do not use the K-energy in our arguments, and our techniques provide a simple roadmap to prove YTD existence theorems for KE type metrics, that only needs convexity of the appropriate Ding energy. As an application, we give a simplified proof of Li–Tian–Wang's existence theorem in the log Fano setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信