无穷远处具有三重结点结构的艾伦-卡恩解

IF 3.1 1区 数学 Q1 MATHEMATICS
Étienne Sandier, Peter Sternberg
{"title":"无穷远处具有三重结点结构的艾伦-卡恩解","authors":"Étienne Sandier,&nbsp;Peter Sternberg","doi":"10.1002/cpa.22204","DOIUrl":null,"url":null,"abstract":"<p>We construct an entire solution <span></span><math>\n <semantics>\n <mrow>\n <mi>U</mi>\n <mo>:</mo>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <mo>→</mo>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$U:\\mathbb {R}^2\\rightarrow \\mathbb {R}^2$</annotation>\n </semantics></math> to the elliptic system\n\n </p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 11","pages":"4163-4211"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Allen–Cahn solutions with triple junction structure at infinity\",\"authors\":\"Étienne Sandier,&nbsp;Peter Sternberg\",\"doi\":\"10.1002/cpa.22204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct an entire solution <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>U</mi>\\n <mo>:</mo>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>→</mo>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$U:\\\\mathbb {R}^2\\\\rightarrow \\\\mathbb {R}^2$</annotation>\\n </semantics></math> to the elliptic system\\n\\n </p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"77 11\",\"pages\":\"4163-4211\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22204\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22204","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们构建了一个椭圆系统的整体解,其中有一个 "三井 "势。这个解是相关能量的局部最小化,即在任何紧凑集合上,与该集合外的竞争者一致的能量最小化。此外,我们还证明,沿着子序列,"三井 "的 "井喷 "会逼近一个最小的 "三井",即......。以前的结果假设了不同程度的势对称性,并没有建立局部最小性,但在这里我们不做这样的对称性假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Allen–Cahn solutions with triple junction structure at infinity

We construct an entire solution U : R 2 R 2 $U:\mathbb {R}^2\rightarrow \mathbb {R}^2$ to the elliptic system

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信