通过镁和硼共同修饰实现稳定的 Cu+ 物种,从而增强 CO2 电还原为 C2+ 产物:原位拉曼光谱研究

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Hua Yang, Xuefan Mu, Jiexin Guan, Bo Ouyang, Huaming Li and Yilin Deng
{"title":"通过镁和硼共同修饰实现稳定的 Cu+ 物种,从而增强 CO2 电还原为 C2+ 产物:原位拉曼光谱研究","authors":"Hua Yang, Xuefan Mu, Jiexin Guan, Bo Ouyang, Huaming Li and Yilin Deng","doi":"10.1039/D4QI00842A","DOIUrl":null,"url":null,"abstract":"<p >The electrochemical carbon dioxide reduction reaction (CO<small><sub>2</sub></small>RR) to produce high-value multi-carbon (C<small><sub>2+</sub></small>) compounds holds significant practical importance in realizing carbon neutrality. Copper-based electrocatalysts are promising for CO<small><sub>2</sub></small>-to-C<small><sub>2+</sub></small> conversion. However, the labile Cu valence at high current densities impedes C<small><sub>2+</sub></small> product generation. Here, we present an electrocatalyst derived from CuO, featuring a heterostructure of Cu/Cu<small><sub>2</sub></small>O/CuO/Mg(OH)<small><sub>2</sub></small><em>via</em> the co-addition of Mg and B during the preparation (referred to as Cu<small><sub>5</sub></small>(B<small><sub>0.02 M</sub></small>)Mg<small><sub>1</sub></small>). The Cu<small><sub>5</sub></small>(B<small><sub>0.02 M</sub></small>)Mg<small><sub>1</sub></small> shows an impressive C<small><sub>2+</sub></small> yield, with a Faraday efficiency (FE<small><sub>C<small><sub>2+</sub></small></sub></small>) of 79.59% at −1.57 V <em>vs.</em> RHE (reversible hydrogen electrode). Additionally, the partial current density of C<small><sub>2+</sub></small> on the Cu<small><sub>5</sub></small>(B<small><sub>0.02 M</sub></small>)Mg<small><sub>1</sub></small> catalyst is −317.03 mA cm<small><sup>−2</sup></small>, 2.7 and 3.5 times higher than those catalysts lacking B (Cu<small><sub>5</sub></small>Mg<small><sub>1</sub></small> catalyst) or Mg (Cu(B<small><sub>0.02 M</sub></small>) catalyst), respectively. Over a wide potential range of 600 mV between −1.17 and −1.77 V <em>vs.</em> RHE, the overall FE<small><sub>C<small><sub>2+</sub></small></sub></small> surpasses 60% on the Cu<small><sub>5</sub></small>(B<small><sub>0.02 M</sub></small>)Mg<small><sub>1</sub></small> catalyst. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM) characterization studies indicate the NaBH<small><sub>4</sub></small> reactant could promote the formation of crystalline Mg(OH)<small><sub>2</sub></small> in the catalyst structure, which is found to better stabilize Cu<small><sup>+</sup></small> at negative potentials compared to the amorphous phase. Further <em>in situ</em> Raman spectroscopy reveals that at increasingly negative potentials, the higher copper species (Cu<small><sup>2+</sup></small>) is inevitably reduced to the lower copper species (Cu<small><sup>0</sup></small>/Cu<small><sup>+</sup></small>). However, the synergy of Mg and B prolongs the presence of Cu<small><sup>+</sup></small> on the catalyst surface across a broad potential range, and *CO and *CO<small><sub>2</sub></small><small><sup>−</sup></small> could still be recorded at quite negative reduction potentials. This suggests enhanced binding strength of *CO intermediates on the catalyst surface, promoting the C–C coupling process.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 15","pages":" 4770-4779"},"PeriodicalIF":6.1000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steady Cu+ species via magnesium and boron co-modification for enhanced CO2 electroreduction to C2+ products: an in situ Raman spectroscopic study†\",\"authors\":\"Hua Yang, Xuefan Mu, Jiexin Guan, Bo Ouyang, Huaming Li and Yilin Deng\",\"doi\":\"10.1039/D4QI00842A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The electrochemical carbon dioxide reduction reaction (CO<small><sub>2</sub></small>RR) to produce high-value multi-carbon (C<small><sub>2+</sub></small>) compounds holds significant practical importance in realizing carbon neutrality. Copper-based electrocatalysts are promising for CO<small><sub>2</sub></small>-to-C<small><sub>2+</sub></small> conversion. However, the labile Cu valence at high current densities impedes C<small><sub>2+</sub></small> product generation. Here, we present an electrocatalyst derived from CuO, featuring a heterostructure of Cu/Cu<small><sub>2</sub></small>O/CuO/Mg(OH)<small><sub>2</sub></small><em>via</em> the co-addition of Mg and B during the preparation (referred to as Cu<small><sub>5</sub></small>(B<small><sub>0.02 M</sub></small>)Mg<small><sub>1</sub></small>). The Cu<small><sub>5</sub></small>(B<small><sub>0.02 M</sub></small>)Mg<small><sub>1</sub></small> shows an impressive C<small><sub>2+</sub></small> yield, with a Faraday efficiency (FE<small><sub>C<small><sub>2+</sub></small></sub></small>) of 79.59% at −1.57 V <em>vs.</em> RHE (reversible hydrogen electrode). Additionally, the partial current density of C<small><sub>2+</sub></small> on the Cu<small><sub>5</sub></small>(B<small><sub>0.02 M</sub></small>)Mg<small><sub>1</sub></small> catalyst is −317.03 mA cm<small><sup>−2</sup></small>, 2.7 and 3.5 times higher than those catalysts lacking B (Cu<small><sub>5</sub></small>Mg<small><sub>1</sub></small> catalyst) or Mg (Cu(B<small><sub>0.02 M</sub></small>) catalyst), respectively. Over a wide potential range of 600 mV between −1.17 and −1.77 V <em>vs.</em> RHE, the overall FE<small><sub>C<small><sub>2+</sub></small></sub></small> surpasses 60% on the Cu<small><sub>5</sub></small>(B<small><sub>0.02 M</sub></small>)Mg<small><sub>1</sub></small> catalyst. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM) characterization studies indicate the NaBH<small><sub>4</sub></small> reactant could promote the formation of crystalline Mg(OH)<small><sub>2</sub></small> in the catalyst structure, which is found to better stabilize Cu<small><sup>+</sup></small> at negative potentials compared to the amorphous phase. Further <em>in situ</em> Raman spectroscopy reveals that at increasingly negative potentials, the higher copper species (Cu<small><sup>2+</sup></small>) is inevitably reduced to the lower copper species (Cu<small><sup>0</sup></small>/Cu<small><sup>+</sup></small>). However, the synergy of Mg and B prolongs the presence of Cu<small><sup>+</sup></small> on the catalyst surface across a broad potential range, and *CO and *CO<small><sub>2</sub></small><small><sup>−</sup></small> could still be recorded at quite negative reduction potentials. This suggests enhanced binding strength of *CO intermediates on the catalyst surface, promoting the C–C coupling process.</p>\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\" 15\",\"pages\":\" 4770-4779\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi00842a\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi00842a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

利用电化学二氧化碳还原反应(CO2RR)生产高价值的多碳(C2+)化合物对于实现碳中和具有重要的现实意义。铜基电催化剂有望实现 CO2 到 C2+ 的转化。然而,在高电流密度下,易变的铜价阻碍了 C2+ 产物的生成。在此,我们介绍一种由 CuO 衍生而来的电催化剂,其特点是在制备过程中通过共加 Mg 和 B 形成 Cu/Cu2O/CuO/Mg(OH)2(简称 Cu5(B0.02M)Mg1)的异质结构。Cu5(B0.02M)Mg1显示出惊人的C2+产率,在-1.57 V与RHE(RHE:可逆氢电极)的电压下,法拉第效率(FEC2+)为79.59%。此外,Cu5(B0.02 M)Mg1 催化剂上的 C2+ 部分电流密度为 -317.03 mA/cm2,分别是缺 B 催化剂(Cu5Mg1 催化剂)或缺 Mg 催化剂(Cu(B0.02 M) 催化剂)的 2.7 倍和 3.5 倍。在相对于 RHE 的 -1.17 ~ -1.77 V 的 600 mV 宽电位范围内,Cu5(B0.02 M)Mg1 催化剂的整体 FEC2+ 超过了 60%。X 射线衍射 (XRD)、X 射线光电子能谱 (XPS) 和高分辨率透射电子显微镜 (HRTEM) 表征表明,NaBH4 反应物可促进催化剂结构中结晶 Mg(OH)2 的形成,与无定形相相比,结晶 Mg(OH)2 在负电位时能更好地稳定 Cu+。进一步的原位拉曼光谱显示,在负电位不断增加的情况下,高铜物种(Cu2+)不可避免地还原为低铜(Cu0/Cu+)。然而,镁和硼的协同作用延长了 Cu+ 在催化剂表面的存在时间,使其跨越了很宽的电位范围,在负还原电位下仍能记录到 *CO 和 *CO2-。这表明催化剂表面*CO 中间产物的结合力增强,促进了 C-C 偶联过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Steady Cu+ species via magnesium and boron co-modification for enhanced CO2 electroreduction to C2+ products: an in situ Raman spectroscopic study†

Steady Cu+ species via magnesium and boron co-modification for enhanced CO2 electroreduction to C2+ products: an in situ Raman spectroscopic study†

The electrochemical carbon dioxide reduction reaction (CO2RR) to produce high-value multi-carbon (C2+) compounds holds significant practical importance in realizing carbon neutrality. Copper-based electrocatalysts are promising for CO2-to-C2+ conversion. However, the labile Cu valence at high current densities impedes C2+ product generation. Here, we present an electrocatalyst derived from CuO, featuring a heterostructure of Cu/Cu2O/CuO/Mg(OH)2via the co-addition of Mg and B during the preparation (referred to as Cu5(B0.02 M)Mg1). The Cu5(B0.02 M)Mg1 shows an impressive C2+ yield, with a Faraday efficiency (FEC2+) of 79.59% at −1.57 V vs. RHE (reversible hydrogen electrode). Additionally, the partial current density of C2+ on the Cu5(B0.02 M)Mg1 catalyst is −317.03 mA cm−2, 2.7 and 3.5 times higher than those catalysts lacking B (Cu5Mg1 catalyst) or Mg (Cu(B0.02 M) catalyst), respectively. Over a wide potential range of 600 mV between −1.17 and −1.77 V vs. RHE, the overall FEC2+ surpasses 60% on the Cu5(B0.02 M)Mg1 catalyst. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM) characterization studies indicate the NaBH4 reactant could promote the formation of crystalline Mg(OH)2 in the catalyst structure, which is found to better stabilize Cu+ at negative potentials compared to the amorphous phase. Further in situ Raman spectroscopy reveals that at increasingly negative potentials, the higher copper species (Cu2+) is inevitably reduced to the lower copper species (Cu0/Cu+). However, the synergy of Mg and B prolongs the presence of Cu+ on the catalyst surface across a broad potential range, and *CO and *CO2 could still be recorded at quite negative reduction potentials. This suggests enhanced binding strength of *CO intermediates on the catalyst surface, promoting the C–C coupling process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信