广义分数跳跃扩散模型下的欧式期权定价

IF 2.5 2区 数学 Q1 MATHEMATICS
Jingjun Guo, Yubing Wang, Weiyi Kang
{"title":"广义分数跳跃扩散模型下的欧式期权定价","authors":"Jingjun Guo, Yubing Wang, Weiyi Kang","doi":"10.1007/s13540-024-00290-4","DOIUrl":null,"url":null,"abstract":"<p>The pricing problem of European option is investigated under the generalized fractional jump-diffusion model. First of all, the generalized fractional jump-diffusion model is proposed, with the assumption that the underlying asset price follows this model, and the explicit solution is derived using the Itô formula. Then, the partial differential equation (PDE) of the European option price is obtained by using the delta-hedging strategy, and the analytical solutions of the European call and put option prices are obtained through the risk-neutral pricing principle. Moreover, the accuracy of closed-form formula for European option pricing is verified by the Monte Carlo simulation. Furthermore, the properties of the pricing formulas are discussed and the impact of main parameters on the option pricing model are analyzed via calculations of Greeks. Finally, the rationality and validity of the established option pricing model are verified by numerical analysis.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"25 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pricing European option under the generalized fractional jump-diffusion model\",\"authors\":\"Jingjun Guo, Yubing Wang, Weiyi Kang\",\"doi\":\"10.1007/s13540-024-00290-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The pricing problem of European option is investigated under the generalized fractional jump-diffusion model. First of all, the generalized fractional jump-diffusion model is proposed, with the assumption that the underlying asset price follows this model, and the explicit solution is derived using the Itô formula. Then, the partial differential equation (PDE) of the European option price is obtained by using the delta-hedging strategy, and the analytical solutions of the European call and put option prices are obtained through the risk-neutral pricing principle. Moreover, the accuracy of closed-form formula for European option pricing is verified by the Monte Carlo simulation. Furthermore, the properties of the pricing formulas are discussed and the impact of main parameters on the option pricing model are analyzed via calculations of Greeks. Finally, the rationality and validity of the established option pricing model are verified by numerical analysis.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00290-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00290-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在广义分数跳跃-扩散模型下研究了欧式期权的定价问题。首先,提出了广义分数跳跃-扩散模型,并假设标的资产价格遵循该模型,利用 Itô 公式得到了显式解。然后,利用三角对冲策略得到了欧式期权价格的偏微分方程(PDE),并通过风险中性定价原理得到了欧式看涨和看跌期权价格的解析解。此外,还通过蒙特卡罗模拟验证了欧式期权定价闭式公式的准确性。此外,还讨论了定价公式的属性,并通过希腊值的计算分析了主要参数对期权定价模型的影响。最后,通过数值分析验证了所建立的期权定价模型的合理性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pricing European option under the generalized fractional jump-diffusion model

Pricing European option under the generalized fractional jump-diffusion model

The pricing problem of European option is investigated under the generalized fractional jump-diffusion model. First of all, the generalized fractional jump-diffusion model is proposed, with the assumption that the underlying asset price follows this model, and the explicit solution is derived using the Itô formula. Then, the partial differential equation (PDE) of the European option price is obtained by using the delta-hedging strategy, and the analytical solutions of the European call and put option prices are obtained through the risk-neutral pricing principle. Moreover, the accuracy of closed-form formula for European option pricing is verified by the Monte Carlo simulation. Furthermore, the properties of the pricing formulas are discussed and the impact of main parameters on the option pricing model are analyzed via calculations of Greeks. Finally, the rationality and validity of the established option pricing model are verified by numerical analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信