利用深度学习方法实时预测和预防事故,加强车联网中的道路安全

Xu Wei
{"title":"利用深度学习方法实时预测和预防事故,加强车联网中的道路安全","authors":"Xu Wei","doi":"10.1016/j.ijin.2024.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>The paper proposes an Internet of Vehicles (IoV)-based Accident Prediction and Prevention System that leverages the Internet of Things (IoT) to tackle the road safety challenges arising from the increased rate and volume of traffic due to population growth. In order to enhance road safety and efficiency, the IoV devices enable real-time data transmission and analysis. The proposed multi-tier framework tracks vehicle and roadside unit (RSU) data, encompassing road traffic conditions and vehicle data. The framework integrates vehicles, road traffic, weather conditions, and external factors. On a cloud-based control server, the proposed Spatio-Temporal Conv-Long Short-Term Memory Autoencoder (STCLA) framework deals with and analyzes the resulting data. This research addresses road safety on the Internet of Vehicles via DL. It proposes a novel framework for real-time accident prevention and prediction, demonstrating its effectiveness and potential impact. In a year-long research in Hubei Province, China, data from two road segments demonstrated a substantial boost in predictive accuracy, achieving an Area Under the Receiver Operating Characteristic Curve (AUROC) score of 0.94.</p></div>","PeriodicalId":100702,"journal":{"name":"International Journal of Intelligent Networks","volume":"5 ","pages":"Pages 212-223"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666603024000216/pdfft?md5=391fca7ae3352f4576588898ec427410&pid=1-s2.0-S2666603024000216-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing road safety in internet of vehicles using deep learning approach for real-time accident prediction and prevention\",\"authors\":\"Xu Wei\",\"doi\":\"10.1016/j.ijin.2024.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper proposes an Internet of Vehicles (IoV)-based Accident Prediction and Prevention System that leverages the Internet of Things (IoT) to tackle the road safety challenges arising from the increased rate and volume of traffic due to population growth. In order to enhance road safety and efficiency, the IoV devices enable real-time data transmission and analysis. The proposed multi-tier framework tracks vehicle and roadside unit (RSU) data, encompassing road traffic conditions and vehicle data. The framework integrates vehicles, road traffic, weather conditions, and external factors. On a cloud-based control server, the proposed Spatio-Temporal Conv-Long Short-Term Memory Autoencoder (STCLA) framework deals with and analyzes the resulting data. This research addresses road safety on the Internet of Vehicles via DL. It proposes a novel framework for real-time accident prevention and prediction, demonstrating its effectiveness and potential impact. In a year-long research in Hubei Province, China, data from two road segments demonstrated a substantial boost in predictive accuracy, achieving an Area Under the Receiver Operating Characteristic Curve (AUROC) score of 0.94.</p></div>\",\"PeriodicalId\":100702,\"journal\":{\"name\":\"International Journal of Intelligent Networks\",\"volume\":\"5 \",\"pages\":\"Pages 212-223\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666603024000216/pdfft?md5=391fca7ae3352f4576588898ec427410&pid=1-s2.0-S2666603024000216-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666603024000216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Networks","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666603024000216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于车联网(IoV)的事故预测与预防系统,该系统利用物联网(IoT)来应对因人口增长导致交通流量增加而带来的道路安全挑战。为了提高道路安全和效率,物联网设备可实现实时数据传输和分析。拟议的多层框架可跟踪车辆和路边装置(RSU)数据,包括道路交通状况和车辆数据。该框架整合了车辆、道路交通、天气状况和外部因素。在基于云的控制服务器上,所提出的时空 Conv-Long Short-Term Memory Autoencoder(STCLA)框架可处理和分析由此产生的数据。这项研究通过 DL 解决车联网上的道路安全问题。它提出了一种用于实时事故预防和预测的新型框架,并展示了其有效性和潜在影响。在中国湖北省进行的为期一年的研究中,来自两个路段的数据大大提高了预测准确性,接收者工作特征曲线下面积(AUROC)得分达到 0.94。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing road safety in internet of vehicles using deep learning approach for real-time accident prediction and prevention

The paper proposes an Internet of Vehicles (IoV)-based Accident Prediction and Prevention System that leverages the Internet of Things (IoT) to tackle the road safety challenges arising from the increased rate and volume of traffic due to population growth. In order to enhance road safety and efficiency, the IoV devices enable real-time data transmission and analysis. The proposed multi-tier framework tracks vehicle and roadside unit (RSU) data, encompassing road traffic conditions and vehicle data. The framework integrates vehicles, road traffic, weather conditions, and external factors. On a cloud-based control server, the proposed Spatio-Temporal Conv-Long Short-Term Memory Autoencoder (STCLA) framework deals with and analyzes the resulting data. This research addresses road safety on the Internet of Vehicles via DL. It proposes a novel framework for real-time accident prevention and prediction, demonstrating its effectiveness and potential impact. In a year-long research in Hubei Province, China, data from two road segments demonstrated a substantial boost in predictive accuracy, achieving an Area Under the Receiver Operating Characteristic Curve (AUROC) score of 0.94.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信