高维度瓦尔什尼-赫尔曼势的信息熵

Q2 Physics and Astronomy
Etido P. Inyang , A.E.L. Aouami , N. Ali , R. Endut , N.R. Ali , S.A. Aljunid
{"title":"高维度瓦尔什尼-赫尔曼势的信息熵","authors":"Etido P. Inyang ,&nbsp;A.E.L. Aouami ,&nbsp;N. Ali ,&nbsp;R. Endut ,&nbsp;N.R. Ali ,&nbsp;S.A. Aljunid","doi":"10.1016/j.physo.2024.100220","DOIUrl":null,"url":null,"abstract":"<div><p>This work investigates the behavior of Shannon entropy and Fisher information for the Varshni-Hellmann potential (VHP) in one and three dimensions using the Nikiforov-Uvarov method. We employ the Greene-Aldrich approximation scheme to obtain the energy eigenvalues and normalized wavefunctions, which are then used to calculate these information-theoretic quantities. Our analysis revealed remarkably similar high-order features in both position and momentum spaces. Notably, our calculations showed enhanced accuracy in predicting particle localization within position space. Furthermore, the combined position and momentum entropies obeyed the lower and upper bounds established by the Berkner-Bialynicki-Birula-Mycieslki inequality. Additionally, for three-dimensional systems, the Stam-Cramer-Rao inequalities were fulfilled for different eigenstates with respect to the calculated Fisher information. It is observed that as the position Fisher entropy decreases, indicating a more precise measurement of position, the momentum Fisher entropy must increase. This implies that the Fisher information regarding momentum decreases, resulting in a decrease in the precision of momentum measurement. This demonstrates how position and momentum uncertainties complement each other in quantum mechanics. Exploring the balance between position and momentum Fisher entropy reveals a fundamental aspect of the uncertainty principle in quantum mechanics, highlighting the restrictions on measuring certain pairs of conjugate variables simultaneously with high precision.</p></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"20 ","pages":"Article 100220"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666032624000188/pdfft?md5=9545623c45a4d1598d3e8f7e265b5e23&pid=1-s2.0-S2666032624000188-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Information entropies with Varshni-Hellmann potential in higher dimensions\",\"authors\":\"Etido P. Inyang ,&nbsp;A.E.L. Aouami ,&nbsp;N. Ali ,&nbsp;R. Endut ,&nbsp;N.R. Ali ,&nbsp;S.A. Aljunid\",\"doi\":\"10.1016/j.physo.2024.100220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work investigates the behavior of Shannon entropy and Fisher information for the Varshni-Hellmann potential (VHP) in one and three dimensions using the Nikiforov-Uvarov method. We employ the Greene-Aldrich approximation scheme to obtain the energy eigenvalues and normalized wavefunctions, which are then used to calculate these information-theoretic quantities. Our analysis revealed remarkably similar high-order features in both position and momentum spaces. Notably, our calculations showed enhanced accuracy in predicting particle localization within position space. Furthermore, the combined position and momentum entropies obeyed the lower and upper bounds established by the Berkner-Bialynicki-Birula-Mycieslki inequality. Additionally, for three-dimensional systems, the Stam-Cramer-Rao inequalities were fulfilled for different eigenstates with respect to the calculated Fisher information. It is observed that as the position Fisher entropy decreases, indicating a more precise measurement of position, the momentum Fisher entropy must increase. This implies that the Fisher information regarding momentum decreases, resulting in a decrease in the precision of momentum measurement. This demonstrates how position and momentum uncertainties complement each other in quantum mechanics. Exploring the balance between position and momentum Fisher entropy reveals a fundamental aspect of the uncertainty principle in quantum mechanics, highlighting the restrictions on measuring certain pairs of conjugate variables simultaneously with high precision.</p></div>\",\"PeriodicalId\":36067,\"journal\":{\"name\":\"Physics Open\",\"volume\":\"20 \",\"pages\":\"Article 100220\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666032624000188/pdfft?md5=9545623c45a4d1598d3e8f7e265b5e23&pid=1-s2.0-S2666032624000188-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666032624000188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666032624000188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用尼基福罗夫-乌瓦洛夫方法,研究了一维和三维瓦尔希尼-赫尔曼势(Varshni-Hellmann potential,VHP)的香农熵和费雪信息的行为。我们采用格林-奥尔德里奇近似方案来获得能量特征值和归一化波函数,然后用它们来计算这些信息理论量。我们的分析表明,位置空间和动量空间的高阶特征非常相似。值得注意的是,我们的计算在预测粒子在位置空间内的定位方面显示出更高的准确性。此外,位置熵和动量熵的组合服从 Berkner-Bialynicki-Birula-Mycieslki 不等式确定的下限和上限。此外,对于三维系统,在不同的特征状态下,计算出的费雪信息也符合斯塔姆-克拉默-拉奥不等式。观察发现,随着位置费雪熵的降低,表明位置测量更加精确,动量费雪熵必然增加。这意味着有关动量的费雪信息减少,导致动量测量精度降低。这说明在量子力学中,位置和动量的不确定性是如何相辅相成的。探索位置和动量费雪熵之间的平衡揭示了量子力学不确定性原理的一个基本方面,突出了同时高精度测量某些共轭变量对的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Information entropies with Varshni-Hellmann potential in higher dimensions

This work investigates the behavior of Shannon entropy and Fisher information for the Varshni-Hellmann potential (VHP) in one and three dimensions using the Nikiforov-Uvarov method. We employ the Greene-Aldrich approximation scheme to obtain the energy eigenvalues and normalized wavefunctions, which are then used to calculate these information-theoretic quantities. Our analysis revealed remarkably similar high-order features in both position and momentum spaces. Notably, our calculations showed enhanced accuracy in predicting particle localization within position space. Furthermore, the combined position and momentum entropies obeyed the lower and upper bounds established by the Berkner-Bialynicki-Birula-Mycieslki inequality. Additionally, for three-dimensional systems, the Stam-Cramer-Rao inequalities were fulfilled for different eigenstates with respect to the calculated Fisher information. It is observed that as the position Fisher entropy decreases, indicating a more precise measurement of position, the momentum Fisher entropy must increase. This implies that the Fisher information regarding momentum decreases, resulting in a decrease in the precision of momentum measurement. This demonstrates how position and momentum uncertainties complement each other in quantum mechanics. Exploring the balance between position and momentum Fisher entropy reveals a fundamental aspect of the uncertainty principle in quantum mechanics, highlighting the restrictions on measuring certain pairs of conjugate variables simultaneously with high precision.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Open
Physics Open Physics and Astronomy-Physics and Astronomy (all)
CiteScore
3.20
自引率
0.00%
发文量
19
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信