{"title":"PSDCLS:基于拉丁方块的平行同步扩散-融合图像加密系统","authors":"Ebrahim Zarei Zefreh","doi":"10.1016/j.jisa.2024.103785","DOIUrl":null,"url":null,"abstract":"<div><p>Today, due to the unparalleled growth of multimedia data sharing, especially digital images, between users over insecure channels in real-time applications, cryptography algorithms have gained increasing attention for the secure and efficient transmission. In classical chaos-based image cryptosystems, the confusion and diffusion operations are often applied as two separate and independent phases, which threatens the cryptosystem security. To address these problems, in this paper, a fast image cryptosystem based on parallel simultaneous diffusion–confusion strategy has been proposed using Latin squares, called PSDCLS. It consists of three main steps. First, the initial parameters of the Hénon-Sine chaotic map are produced from SHA256 of both the plain image content and the user’s secret key. Second, a chaos-based random Latin square is constructed by employing the chaotic sequence produced through the Hénon-Sine chaotic map. Third, a parallel simultaneous diffusion–confusion scheme is proposed by using Latin square and vectorization technique to overcome the problems of computational complexity and high risk of separable and iterative confusion–diffusion operations in the classical chaos-based image cryptosystems. To analyze and evaluate the security and performance of PSDCLS cryptosystem, we conducted extensive simulations and experiments on various benchmark images. Experimental results and analyses show that PSDCLS achieves excellent scores for information entropy (<span><math><mrow><mo>></mo><mn>7</mn><mo>.</mo><mn>99</mn></mrow></math></span>), correlation coefficients close to 0, key space (<span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>512</mn></mrow></msup></math></span>), NPCR (<span><math><mrow><mo>></mo><mn>99</mn><mo>.</mo><mn>60</mn><mtext>%</mtext></mrow></math></span>), UACI (<span><math><mrow><mo>></mo><mn>33</mn><mo>.</mo><mn>46</mn><mtext>%</mtext></mrow></math></span>). The encryption time for test images of size 512 × 512 and <span><math><mrow><mn>512</mn><mo>×</mo><mn>512</mn><mo>×</mo><mn>3</mn></mrow></math></span> was around 0.026 and 0.081 s, respectively. Therefore, PSDCLS is highly robust against common cryptographic attacks and serves as a swift cryptosystem for real-time encryption applications. The source code of PSDCLS is accessible at: <span>https://github.com/EbrahimZarei64/PSDCLS</span><svg><path></path></svg>.</p></div>","PeriodicalId":48638,"journal":{"name":"Journal of Information Security and Applications","volume":"83 ","pages":"Article 103785"},"PeriodicalIF":3.8000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PSDCLS: Parallel simultaneous diffusion–confusion image cryptosystem based on Latin square\",\"authors\":\"Ebrahim Zarei Zefreh\",\"doi\":\"10.1016/j.jisa.2024.103785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Today, due to the unparalleled growth of multimedia data sharing, especially digital images, between users over insecure channels in real-time applications, cryptography algorithms have gained increasing attention for the secure and efficient transmission. In classical chaos-based image cryptosystems, the confusion and diffusion operations are often applied as two separate and independent phases, which threatens the cryptosystem security. To address these problems, in this paper, a fast image cryptosystem based on parallel simultaneous diffusion–confusion strategy has been proposed using Latin squares, called PSDCLS. It consists of three main steps. First, the initial parameters of the Hénon-Sine chaotic map are produced from SHA256 of both the plain image content and the user’s secret key. Second, a chaos-based random Latin square is constructed by employing the chaotic sequence produced through the Hénon-Sine chaotic map. Third, a parallel simultaneous diffusion–confusion scheme is proposed by using Latin square and vectorization technique to overcome the problems of computational complexity and high risk of separable and iterative confusion–diffusion operations in the classical chaos-based image cryptosystems. To analyze and evaluate the security and performance of PSDCLS cryptosystem, we conducted extensive simulations and experiments on various benchmark images. Experimental results and analyses show that PSDCLS achieves excellent scores for information entropy (<span><math><mrow><mo>></mo><mn>7</mn><mo>.</mo><mn>99</mn></mrow></math></span>), correlation coefficients close to 0, key space (<span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>512</mn></mrow></msup></math></span>), NPCR (<span><math><mrow><mo>></mo><mn>99</mn><mo>.</mo><mn>60</mn><mtext>%</mtext></mrow></math></span>), UACI (<span><math><mrow><mo>></mo><mn>33</mn><mo>.</mo><mn>46</mn><mtext>%</mtext></mrow></math></span>). The encryption time for test images of size 512 × 512 and <span><math><mrow><mn>512</mn><mo>×</mo><mn>512</mn><mo>×</mo><mn>3</mn></mrow></math></span> was around 0.026 and 0.081 s, respectively. Therefore, PSDCLS is highly robust against common cryptographic attacks and serves as a swift cryptosystem for real-time encryption applications. The source code of PSDCLS is accessible at: <span>https://github.com/EbrahimZarei64/PSDCLS</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":48638,\"journal\":{\"name\":\"Journal of Information Security and Applications\",\"volume\":\"83 \",\"pages\":\"Article 103785\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Security and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214212624000887\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Security and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214212624000887","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
PSDCLS: Parallel simultaneous diffusion–confusion image cryptosystem based on Latin square
Today, due to the unparalleled growth of multimedia data sharing, especially digital images, between users over insecure channels in real-time applications, cryptography algorithms have gained increasing attention for the secure and efficient transmission. In classical chaos-based image cryptosystems, the confusion and diffusion operations are often applied as two separate and independent phases, which threatens the cryptosystem security. To address these problems, in this paper, a fast image cryptosystem based on parallel simultaneous diffusion–confusion strategy has been proposed using Latin squares, called PSDCLS. It consists of three main steps. First, the initial parameters of the Hénon-Sine chaotic map are produced from SHA256 of both the plain image content and the user’s secret key. Second, a chaos-based random Latin square is constructed by employing the chaotic sequence produced through the Hénon-Sine chaotic map. Third, a parallel simultaneous diffusion–confusion scheme is proposed by using Latin square and vectorization technique to overcome the problems of computational complexity and high risk of separable and iterative confusion–diffusion operations in the classical chaos-based image cryptosystems. To analyze and evaluate the security and performance of PSDCLS cryptosystem, we conducted extensive simulations and experiments on various benchmark images. Experimental results and analyses show that PSDCLS achieves excellent scores for information entropy (), correlation coefficients close to 0, key space (), NPCR (), UACI (). The encryption time for test images of size 512 × 512 and was around 0.026 and 0.081 s, respectively. Therefore, PSDCLS is highly robust against common cryptographic attacks and serves as a swift cryptosystem for real-time encryption applications. The source code of PSDCLS is accessible at: https://github.com/EbrahimZarei64/PSDCLS.
期刊介绍:
Journal of Information Security and Applications (JISA) focuses on the original research and practice-driven applications with relevance to information security and applications. JISA provides a common linkage between a vibrant scientific and research community and industry professionals by offering a clear view on modern problems and challenges in information security, as well as identifying promising scientific and "best-practice" solutions. JISA issues offer a balance between original research work and innovative industrial approaches by internationally renowned information security experts and researchers.