现代分子疗法中的核酸:战略性药物设计的机遇领域

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Vito Genna , Laura Reyes-Fraile , Javier Iglesias-Fernandez , Modesto Orozco
{"title":"现代分子疗法中的核酸:战略性药物设计的机遇领域","authors":"Vito Genna ,&nbsp;Laura Reyes-Fraile ,&nbsp;Javier Iglesias-Fernandez ,&nbsp;Modesto Orozco","doi":"10.1016/j.sbi.2024.102838","DOIUrl":null,"url":null,"abstract":"<div><p>RNA vaccines have made evident to society what was already known by the scientific community: nucleic acids will be the “drugs of the future.” By modifying the genome, interfering in transcription or translation, and by introducing new catalysts into the cell or by mimicking antibody effects, nucleic acids can generate therapeutic activities that are not accessible by any other therapeutic agents. There are, however, challenges that need to be solved in the next few years to make nucleic acids usable in a wide range of therapeutic scenarios. This review illustrates how simulation methods can help achieve this goal.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"87 ","pages":"Article 102838"},"PeriodicalIF":6.1000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nucleic acids in modern molecular therapies: A realm of opportunities for strategic drug design\",\"authors\":\"Vito Genna ,&nbsp;Laura Reyes-Fraile ,&nbsp;Javier Iglesias-Fernandez ,&nbsp;Modesto Orozco\",\"doi\":\"10.1016/j.sbi.2024.102838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>RNA vaccines have made evident to society what was already known by the scientific community: nucleic acids will be the “drugs of the future.” By modifying the genome, interfering in transcription or translation, and by introducing new catalysts into the cell or by mimicking antibody effects, nucleic acids can generate therapeutic activities that are not accessible by any other therapeutic agents. There are, however, challenges that need to be solved in the next few years to make nucleic acids usable in a wide range of therapeutic scenarios. This review illustrates how simulation methods can help achieve this goal.</p></div>\",\"PeriodicalId\":10887,\"journal\":{\"name\":\"Current opinion in structural biology\",\"volume\":\"87 \",\"pages\":\"Article 102838\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959440X24000654\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X24000654","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

核糖核酸疫苗向社会展示了科学界早已知道的事实:核酸将成为 "未来的药物"。通过修改基因组、干扰转录或翻译、在细胞中引入新的催化剂或模仿抗体效应,核酸可以产生任何其他治疗剂都无法达到的治疗效果。然而,要使核酸在广泛的治疗方案中发挥作用,还需要在未来几年内解决一些难题。本综述阐述了模拟方法如何帮助实现这一目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nucleic acids in modern molecular therapies: A realm of opportunities for strategic drug design

RNA vaccines have made evident to society what was already known by the scientific community: nucleic acids will be the “drugs of the future.” By modifying the genome, interfering in transcription or translation, and by introducing new catalysts into the cell or by mimicking antibody effects, nucleic acids can generate therapeutic activities that are not accessible by any other therapeutic agents. There are, however, challenges that need to be solved in the next few years to make nucleic acids usable in a wide range of therapeutic scenarios. This review illustrates how simulation methods can help achieve this goal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in structural biology
Current opinion in structural biology 生物-生化与分子生物学
CiteScore
12.20
自引率
2.90%
发文量
179
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In COSB, we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. [...] The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance. -Folding and Binding- Nucleic acids and their protein complexes- Macromolecular Machines- Theory and Simulation- Sequences and Topology- New constructs and expression of proteins- Membranes- Engineering and Design- Carbohydrate-protein interactions and glycosylation- Biophysical and molecular biological methods- Multi-protein assemblies in signalling- Catalysis and Regulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信