利用基于机器学习的 pedotransfer 功能,建立欧洲表土容重和有机碳储量数据库(0-20 厘米

IF 11.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Songchao Chen, Zhongxing Chen, Xianglin Zhang, Zhongkui Luo, Calogero Schillaci, Dominique Arrouays, Anne Christine Richer-de-Forges, Zhou Shi
{"title":"利用基于机器学习的 pedotransfer 功能,建立欧洲表土容重和有机碳储量数据库(0-20 厘米","authors":"Songchao Chen, Zhongxing Chen, Xianglin Zhang, Zhongkui Luo, Calogero Schillaci, Dominique Arrouays, Anne Christine Richer-de-Forges, Zhou Shi","doi":"10.5194/essd-16-2367-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Soil bulk density (BD) serves as a fundamental indicator of soil health and quality, exerting a significant influence on critical factors such as plant growth, nutrient availability, and water retention. Due to its limited availability in soil databases, the application of pedotransfer functions (PTFs) has emerged as a potent tool for predicting BD using other easily measurable soil properties, while the impact of these PTFs' performance on soil organic carbon (SOC) stock calculation has been rarely explored. In this study, we proposed an innovative local modeling approach for predicting BD of fine earth (BDfine) across Europe using the recently released BDfine data from the LUCAS Soil (Land Use and Coverage Area Frame Survey Soil) 2018 (0–20 cm) and relevant predictors. Our approach involved a combination of neighbor sample search, forward recursive feature selection (FRFS), and random forest (RF) models (local-RFFRFS). The results showed that local-RFFRFS had a good performance in predicting BDfine (R2 of 0.58, root mean square error (RMSE) of 0.19 g cm−3, relative error (RE) of 16.27 %), surpassing the earlier-published PTFs (R2 of 0.40–0.45, RMSE of 0.22 g cm−3, RE of 19.11 %–21.18 %) and global PTFs using RF models with and without FRFS (R2 of 0.56–0.57, RMSE of 0.19 g cm−3, RE of 16.47 %–16.74 %). Interestingly, we found that the best earlier-published PTF (R2 = 0.84, RMSE = 1.39 kg m−2, RE of 17.57 %) performed close to the local-RFFRFS (R2 = 0.85, RMSE = 1.32 kg m−2, RE of 15.01 %) in SOC stock calculation using BDfine predictions. However, the local-RFFRFS still performed better (ΔR2 > 0.2) for soil samples with low SOC stocks (< 3 kg m−2). Therefore, we suggest that the local-RFFRFS is a promising method for BDfine prediction, while earlier-published PTFs would be more efficient when BDfine is subsequently utilized for calculating SOC stock. Finally, we produced two topsoil BDfine and SOC stock datasets (18 945 and 15 389 soil samples) at 0–20 cm for LUCAS Soil 2018 using the best earlier-published PTF and local-RFFRFS, respectively. This dataset is archived on the Zenodo platform at https://doi.org/10.5281/zenodo.10211884 (S. Chen et al., 2023). The outcomes of this study present a meaningful advancement in enhancing the predictive accuracy of BDfine, and the resultant BDfine and SOC stock datasets for topsoil across the Europe enable more precise soil hydrological and biological modeling.","PeriodicalId":48747,"journal":{"name":"Earth System Science Data","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"European topsoil bulk density and organic carbon stock database (0–20 cm) using machine-learning-based pedotransfer functions\",\"authors\":\"Songchao Chen, Zhongxing Chen, Xianglin Zhang, Zhongkui Luo, Calogero Schillaci, Dominique Arrouays, Anne Christine Richer-de-Forges, Zhou Shi\",\"doi\":\"10.5194/essd-16-2367-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Soil bulk density (BD) serves as a fundamental indicator of soil health and quality, exerting a significant influence on critical factors such as plant growth, nutrient availability, and water retention. Due to its limited availability in soil databases, the application of pedotransfer functions (PTFs) has emerged as a potent tool for predicting BD using other easily measurable soil properties, while the impact of these PTFs' performance on soil organic carbon (SOC) stock calculation has been rarely explored. In this study, we proposed an innovative local modeling approach for predicting BD of fine earth (BDfine) across Europe using the recently released BDfine data from the LUCAS Soil (Land Use and Coverage Area Frame Survey Soil) 2018 (0–20 cm) and relevant predictors. Our approach involved a combination of neighbor sample search, forward recursive feature selection (FRFS), and random forest (RF) models (local-RFFRFS). The results showed that local-RFFRFS had a good performance in predicting BDfine (R2 of 0.58, root mean square error (RMSE) of 0.19 g cm−3, relative error (RE) of 16.27 %), surpassing the earlier-published PTFs (R2 of 0.40–0.45, RMSE of 0.22 g cm−3, RE of 19.11 %–21.18 %) and global PTFs using RF models with and without FRFS (R2 of 0.56–0.57, RMSE of 0.19 g cm−3, RE of 16.47 %–16.74 %). Interestingly, we found that the best earlier-published PTF (R2 = 0.84, RMSE = 1.39 kg m−2, RE of 17.57 %) performed close to the local-RFFRFS (R2 = 0.85, RMSE = 1.32 kg m−2, RE of 15.01 %) in SOC stock calculation using BDfine predictions. However, the local-RFFRFS still performed better (ΔR2 > 0.2) for soil samples with low SOC stocks (< 3 kg m−2). Therefore, we suggest that the local-RFFRFS is a promising method for BDfine prediction, while earlier-published PTFs would be more efficient when BDfine is subsequently utilized for calculating SOC stock. Finally, we produced two topsoil BDfine and SOC stock datasets (18 945 and 15 389 soil samples) at 0–20 cm for LUCAS Soil 2018 using the best earlier-published PTF and local-RFFRFS, respectively. This dataset is archived on the Zenodo platform at https://doi.org/10.5281/zenodo.10211884 (S. Chen et al., 2023). The outcomes of this study present a meaningful advancement in enhancing the predictive accuracy of BDfine, and the resultant BDfine and SOC stock datasets for topsoil across the Europe enable more precise soil hydrological and biological modeling.\",\"PeriodicalId\":48747,\"journal\":{\"name\":\"Earth System Science Data\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth System Science Data\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/essd-16-2367-2024\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/essd-16-2367-2024","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要土壤容重(BD)是土壤健康和质量的基本指标,对植物生长、养分供应和保水性等关键因素具有重要影响。由于其在土壤数据库中的可用性有限, pedotransfer 函数(PTFs)的应用已成为利用其他易于测量的土壤特性预测土壤容重的有效工具,而这些 PTFs 的性能对土壤有机碳(SOC)储量计算的影响却很少被探讨。在本研究中,我们提出了一种创新的局部建模方法,利用最近发布的 2018 年 LUCAS 土壤(土地利用和覆盖区框架调查土壤)(0-20 厘米)BDfine 数据和相关预测因子,预测整个欧洲的细土 BD(BDfine)。我们的方法结合了邻近样本搜索、前向递归特征选择(FRFS)和随机森林(RF)模型(local-RFFRFS)。结果表明,局部-RFFRFS 在预测 BDfine 方面表现良好(R2 为 0.58,均方根误差 (RMSE) 为 0.19 g cm-3,相对误差 (RE) 为 16.27 %),超过了早期发表的 PTFs(R2 为 0.40-0.45,RMSE 为 0.22 g cm-3,RE 为 19.11 %-21.18 %)和使用有 FRFS 和无 FRFS 射频模型的全球 PTFs(R2 为 0.56-0.57,RMSE 为 0.19 g cm-3,RE 为 16.47 %-16.74%)。有趣的是,我们发现早期发表的最佳 PTF(R2 = 0.84,均方根误差 = 1.39 kg m-2,RE 为 17.57 %)在使用 BDfine 预测计算 SOC 储量时的表现接近于本地-RFFRFS(R2 = 0.85,均方根误差 = 1.32 kg m-2,RE 为 15.01 %)。不过,对于 SOC 储量较低(< 3 kg m-2)的土壤样本,本地 RFFRFS 的表现仍然更好(ΔR2 > 0.2)。因此,我们认为本地-RFFRFS 是一种很有前途的 BDfine 预测方法,而在随后利用 BDfine 计算 SOC 储量时,早期发表的 PTF 将更为有效。最后,我们为 LUCAS Soil 2018 制作了两个 0-20 厘米表土 BDfine 和 SOC 储量数据集(18 945 和 15 389 个土壤样本),分别使用了早期发布的最佳 PTF 和 local-RFFRFS。该数据集在 Zenodo 平台上存档,网址为 https://doi.org/10.5281/zenodo.10211884(S. Chen 等,2023 年)。这项研究的成果在提高 BDfine 预测准确性方面取得了重大进展,由此产生的欧洲表层土壤 BDfine 和 SOC 储量数据集可用于更精确的土壤水文和生物建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
European topsoil bulk density and organic carbon stock database (0–20 cm) using machine-learning-based pedotransfer functions
Abstract. Soil bulk density (BD) serves as a fundamental indicator of soil health and quality, exerting a significant influence on critical factors such as plant growth, nutrient availability, and water retention. Due to its limited availability in soil databases, the application of pedotransfer functions (PTFs) has emerged as a potent tool for predicting BD using other easily measurable soil properties, while the impact of these PTFs' performance on soil organic carbon (SOC) stock calculation has been rarely explored. In this study, we proposed an innovative local modeling approach for predicting BD of fine earth (BDfine) across Europe using the recently released BDfine data from the LUCAS Soil (Land Use and Coverage Area Frame Survey Soil) 2018 (0–20 cm) and relevant predictors. Our approach involved a combination of neighbor sample search, forward recursive feature selection (FRFS), and random forest (RF) models (local-RFFRFS). The results showed that local-RFFRFS had a good performance in predicting BDfine (R2 of 0.58, root mean square error (RMSE) of 0.19 g cm−3, relative error (RE) of 16.27 %), surpassing the earlier-published PTFs (R2 of 0.40–0.45, RMSE of 0.22 g cm−3, RE of 19.11 %–21.18 %) and global PTFs using RF models with and without FRFS (R2 of 0.56–0.57, RMSE of 0.19 g cm−3, RE of 16.47 %–16.74 %). Interestingly, we found that the best earlier-published PTF (R2 = 0.84, RMSE = 1.39 kg m−2, RE of 17.57 %) performed close to the local-RFFRFS (R2 = 0.85, RMSE = 1.32 kg m−2, RE of 15.01 %) in SOC stock calculation using BDfine predictions. However, the local-RFFRFS still performed better (ΔR2 > 0.2) for soil samples with low SOC stocks (< 3 kg m−2). Therefore, we suggest that the local-RFFRFS is a promising method for BDfine prediction, while earlier-published PTFs would be more efficient when BDfine is subsequently utilized for calculating SOC stock. Finally, we produced two topsoil BDfine and SOC stock datasets (18 945 and 15 389 soil samples) at 0–20 cm for LUCAS Soil 2018 using the best earlier-published PTF and local-RFFRFS, respectively. This dataset is archived on the Zenodo platform at https://doi.org/10.5281/zenodo.10211884 (S. Chen et al., 2023). The outcomes of this study present a meaningful advancement in enhancing the predictive accuracy of BDfine, and the resultant BDfine and SOC stock datasets for topsoil across the Europe enable more precise soil hydrological and biological modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth System Science Data
Earth System Science Data GEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
18.00
自引率
5.30%
发文量
231
审稿时长
35 weeks
期刊介绍: Earth System Science Data (ESSD) is an international, interdisciplinary journal that publishes articles on original research data in order to promote the reuse of high-quality data in the field of Earth system sciences. The journal welcomes submissions of original data or data collections that meet the required quality standards and have the potential to contribute to the goals of the journal. It includes sections dedicated to regular-length articles, brief communications (such as updates to existing data sets), commentaries, review articles, and special issues. ESSD is abstracted and indexed in several databases, including Science Citation Index Expanded, Current Contents/PCE, Scopus, ADS, CLOCKSS, CNKI, DOAJ, EBSCO, Gale/Cengage, GoOA (CAS), and Google Scholar, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信