关于马尔可夫可加过程和马尔可夫调制广义奥恩斯坦-乌伦贝克过程的积分矩

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Anita Behme, Paolo Di Tella, Apostolos Sideris
{"title":"关于马尔可夫可加过程和马尔可夫调制广义奥恩斯坦-乌伦贝克过程的积分矩","authors":"Anita Behme,&nbsp;Paolo Di Tella,&nbsp;Apostolos Sideris","doi":"10.1016/j.spa.2024.104382","DOIUrl":null,"url":null,"abstract":"<div><p>We establish sufficient conditions for the existence, and derive explicit formulas for the <span><math><mi>κ</mi></math></span>’th moments, <span><math><mrow><mi>κ</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, of Markov modulated generalized Ornstein–Uhlenbeck processes as well as their stationary distributions. In particular, the running mean, the autocovariance function, and integer moments of the stationary distribution are derived in terms of the characteristics of the driving Markov additive process.</p><p>Our derivations rely on new general results on moments of Markov additive processes and (multidimensional) integrals with respect to Markov additive processes.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"174 ","pages":"Article 104382"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304414924000887/pdfft?md5=a4aad3e554a4842b41e2a355c4134f09&pid=1-s2.0-S0304414924000887-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On moments of integrals with respect to Markov additive processes and of Markov modulated generalized Ornstein–Uhlenbeck processes\",\"authors\":\"Anita Behme,&nbsp;Paolo Di Tella,&nbsp;Apostolos Sideris\",\"doi\":\"10.1016/j.spa.2024.104382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We establish sufficient conditions for the existence, and derive explicit formulas for the <span><math><mi>κ</mi></math></span>’th moments, <span><math><mrow><mi>κ</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, of Markov modulated generalized Ornstein–Uhlenbeck processes as well as their stationary distributions. In particular, the running mean, the autocovariance function, and integer moments of the stationary distribution are derived in terms of the characteristics of the driving Markov additive process.</p><p>Our derivations rely on new general results on moments of Markov additive processes and (multidimensional) integrals with respect to Markov additive processes.</p></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"174 \",\"pages\":\"Article 104382\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304414924000887/pdfft?md5=a4aad3e554a4842b41e2a355c4134f09&pid=1-s2.0-S0304414924000887-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924000887\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924000887","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们为马尔可夫调制广义奥恩斯坦-乌伦贝克过程的κ'th矩κ≥1及其静态分布建立了存在的充分条件,并推导出明确的公式。我们的推导依赖于关于马尔可夫加过程矩和(多维)马尔可夫加过程积分的新的一般结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On moments of integrals with respect to Markov additive processes and of Markov modulated generalized Ornstein–Uhlenbeck processes

We establish sufficient conditions for the existence, and derive explicit formulas for the κ’th moments, κ1, of Markov modulated generalized Ornstein–Uhlenbeck processes as well as their stationary distributions. In particular, the running mean, the autocovariance function, and integer moments of the stationary distribution are derived in terms of the characteristics of the driving Markov additive process.

Our derivations rely on new general results on moments of Markov additive processes and (multidimensional) integrals with respect to Markov additive processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信